Your browser doesn't support javascript.
loading
High Mobility Transistors and Flexible Optical Synapses Enabled by Wafer-Scale Chemical Transformation of Pt-Based 2D Layers.
Han, Sang Sub; Shin, June-Chul; Ghanipour, Alireza; Lee, Ji-Hyun; Lee, Sang-Gil; Kim, Jung Han; Chung, Hee-Suk; Lee, Gwan-Hyoung; Jung, Yeonwoong.
Afiliación
  • Han SS; NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.
  • Shin JC; NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.
  • Ghanipour A; Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
  • Lee JH; NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.
  • Lee SG; Electron Microscopy Group of Materials Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea.
  • Kim JH; Electron Microscopy Group of Materials Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea.
  • Chung HS; Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea.
  • Lee GH; Electron Microscopy Group of Materials Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea.
  • Jung Y; Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
ACS Appl Mater Interfaces ; 16(28): 36599-36608, 2024 Jul 17.
Article en En | MEDLINE | ID: mdl-38949620
ABSTRACT
Electronic devices employing two-dimensional (2D) van der Waals (vdW) transition-metal dichalcogenide (TMD) layers as semiconducting channels often exhibit limited performance (e.g., low carrier mobility), in part, due to their high contact resistances caused by interfacing non-vdW three-dimensional (3D) metal electrodes. Herein, we report that this intrinsic contact issue can be efficiently mitigated by forming the 2D/2D in-plane junctions of 2D semiconductor channels seamlessly interfaced with 2D metal electrodes. For this, we demonstrated the selectively patterned conversion of semiconducting 2D PtSe2 (channels) to metallic 2D PtTe2 (electrodes) layers by employing a wafer-scale low-temperature chemical vapor deposition (CVD) process. We investigated a variety of field-effect transistors (FETs) employing wafer-scale CVD-2D PtSe2/2D PtTe2 heterolayers and identified that silicon dioxide (SiO2) top-gated FETs exhibited an extremely high hole mobility of ∼120 cm2 V-1 s-1 at room temperature, significantly surpassing performances with previous wafer-scale 2D PtSe2-based FETs. The low-temperature nature of the CVD method further allowed for the direct fabrication of wafer-scale arrays of 2D PtSe2/2D PtTe2 heterolayers on polyamide (PI) substrates, which intrinsically displayed optical pulse-induced artificial synaptic behaviors. This study is believed to vastly broaden the applicability of 2D TMD layers for next-generation, high-performance electronic devices with unconventional functionalities.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos