Your browser doesn't support javascript.
loading
Microscale geometrical modulation of PIEZO1 mediated mechanosensing through cytoskeletal redistribution.
Wang, Haoqing Jerry; Wang, Yao; Mirjavadi, Seyed Sajad; Andersen, Tomas; Moldovan, Laura; Vatankhah, Parham; Russell, Blake; Jin, Jasmine; Zhou, Zijing; Li, Qing; Cox, Charles D; Su, Qian Peter; Ju, Lining Arnold.
Afiliación
  • Wang HJ; School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
  • Wang Y; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
  • Mirjavadi SS; Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia.
  • Andersen T; School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
  • Moldovan L; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
  • Vatankhah P; School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
  • Russell B; School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
  • Jin J; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
  • Zhou Z; Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia.
  • Li Q; School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
  • Cox CD; School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
  • Su QP; School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
  • Ju LA; Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Article en En | MEDLINE | ID: mdl-38951553
ABSTRACT
The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Citoesqueleto / Calcio / Actinas / Mecanotransducción Celular / Canales Iónicos Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Citoesqueleto / Calcio / Actinas / Mecanotransducción Celular / Canales Iónicos Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido