Your browser doesn't support javascript.
loading
Classification of rotation-invariant biomedical images using equivariant neural networks.
Bengtsson Bernander, Karl; Sintorn, Ida-Maria; Strand, Robin; Nyström, Ingela.
Afiliación
  • Bengtsson Bernander K; Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden. karl.bengtsson_bernander@it.uu.se.
  • Sintorn IM; Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden.
  • Strand R; Vironova AB, Stockholm, Sweden.
  • Nyström I; Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden.
Sci Rep ; 14(1): 14995, 2024 07 01.
Article en En | MEDLINE | ID: mdl-38951630
ABSTRACT
Transmission electron microscopy (TEM) is an imaging technique used to visualize and analyze nano-sized structures and objects such as virus particles. Light microscopy can be used to diagnose diseases or characterize e.g. blood cells. Since samples under microscopes exhibit certain symmetries, such as global rotation invariance, equivariant neural networks are presumed to be useful. In this study, a baseline convolutional neural network is constructed in the form of the commonly used VGG16 classifier. Thereafter, it is modified to be equivariant to the p4 symmetry group of rotations of multiples of 90° using group convolutions. This yields a number of benefits on a TEM virus dataset, including higher top validation set accuracy by on average 7.6% and faster convergence during training by on average 23.1% of that of the baseline. Similarly, when training and testing on images of blood cells, the convergence time for the equivariant neural network is 7.9% of that of the baseline. From this it is concluded that augmentation strategies for rotation can be skipped. Furthermore, when modelling the accuracy versus amount of TEM virus training data with a power law, the equivariant network has a slope of - 0.43 compared to - 0.26 of the baseline. Thus the equivariant network learns faster than the baseline when more training data is added. This study extends previous research on equivariant neural networks applied to images which exhibit symmetries to isometric transformations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Microscopía Electrónica de Transmisión Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Microscopía Electrónica de Transmisión Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido