Your browser doesn't support javascript.
loading
Mechanism Analysis of Selenium-Containing Compounds in Alleviating Spinal Cord Injury Based on Network Pharmacology and Molecular Docking Technology.
Han, Wen; Xie, Ling; Ding, Chaochao; Dai, Dandan; Wang, Nan; Ren, Jianmin; Chen, Hailin; Zhu, Suyan; Xiao, Jian; Xu, Hongbin.
Afiliación
  • Han W; Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
  • Xie L; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.
  • Ding C; Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Dai D; Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
  • Wang N; Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
  • Ren J; Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
  • Chen H; Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
  • Zhu S; Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
  • Xiao J; Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China. suyan_chu@hotmail.com.
  • Xu H; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China. xfxj2000@126.com.
Mol Neurobiol ; 2024 Jul 02.
Article en En | MEDLINE | ID: mdl-38954252
ABSTRACT
Spinal cord injury (SCI) is a severe traumatic condition in spinal surgery characterized by nerve damage in and below the injured area. Despite advancements in understanding the pathophysiology of SCI, effective clinical treatments remain elusive. Selenium compounds have become a research hotspot due to their diverse medicinal activities. Previously, our group synthesized a selenium-containing Compound 34# with significant anti-inflammatory activity. This study aimed to explore the anti-SCI effects of selenium-containing compounds using network pharmacology, molecular docking (MD), and ADMET methods. To identify SCI-related targets and those associated with 34#, GeneCards, NCBI, and SEA databases were employed. Eight overlapping targets were considered candidate targets, and molecular docking was performed using the PDB database and AutoDock software. The STRING database was used to obtain protein-protein interactions (PPI). Molecular dynamics simulation, MM/GBSA binding free energy score, and ADMET prediction were used to evaluate the potential targets and drug properties of 34#. Finally, experiments on NSC34 cells and mice were to verify the effects of 34# on SCI. Our results revealed eight candidate targets for 34# in the treatment of SCI. PPI and MD identified ADRB2 and HTR1F as the highest connectivity with 34#. ADMET analysis confirmed the low toxicity and safety of 34#. In vitro and in vivo models validated the anti-SCI effects. Our study elucidated candidate targets for alleviating SCI with 34#, explored PPI and target-related signaling pathways, and validated its anti-SCI effects. These findings enhance our understanding of 34#'s mechanism in treating SCI, positioning it as a potential candidate for SCI prevention.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Mol Neurobiol Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Mol Neurobiol Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos