Your browser doesn't support javascript.
loading
Automated eyeball volume measurement based on CT images using neural network-based segmentation and simple estimation.
Han, Sujeong; Lee, Jeong Kyu; Lee, Daewon; Lee, Jaesung.
Afiliación
  • Han S; Department of Artificial Intelligence, Chung-Ang University, Seoul, 06974, Republic of Korea.
  • Lee JK; Department of Ophthalmology, Chung-Ang University College of Medicine, Chung-Ang University Hospital, Seoul, 06973, Republic of Korea. lk1246@cau.ac.kr.
  • Lee D; Department of Art and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea. dwlee@cau.ac.kr.
  • Lee J; Department of Artificial Intelligence, Chung-Ang University, Seoul, 06974, Republic of Korea. curseor@cau.ac.kr.
Sci Rep ; 14(1): 15094, 2024 07 02.
Article en En | MEDLINE | ID: mdl-38956139
ABSTRACT
With the increase in the dependency on digital devices, the incidence of myopia, a precursor of various ocular diseases, has risen significantly. Because myopia and eyeball volume are related, myopia progression can be monitored through eyeball volume estimation. However, existing methods are limited because the eyeball shape is disregarded during estimation. We propose an automated eyeball volume estimation method from computed tomography images that incorporates prior knowledge of the actual eyeball shape. This study involves data preprocessing, image segmentation, and volume estimation steps, which include the truncated cone formula and integral equation. We obtained eyeball image masks using U-Net, HFCN, DeepLab v3 +, SegNet, and HardNet-MSEG. Data from 200 subjects were used for volume estimation, and manually extracted eyeball volumes were used for validation. U-Net outperformed among the segmentation models, and the proposed volume estimation method outperformed comparative methods on all evaluation metrics, with a correlation coefficient of 0.819, mean absolute error of 0.640, and mean squared error of 0.554. The proposed method surpasses existing methods, provides an accurate eyeball volume estimation for monitoring the progression of myopia, and could potentially aid in the diagnosis of ocular diseases. It could be extended to volume estimation of other ocular structures.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía Computarizada por Rayos X / Redes Neurales de la Computación / Ojo / Miopía Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía Computarizada por Rayos X / Redes Neurales de la Computación / Ojo / Miopía Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido