Cascade reaction for bio-polyol synthesis from sunflower oil over a W/ZSM-5 zeolite catalyst for the fabrication of a bio-polyurethane-based porous biocomposite with high oil uptake.
RSC Adv
; 14(29): 20974-20981, 2024 Jun 27.
Article
en En
| MEDLINE
| ID: mdl-38957584
ABSTRACT
A W/ZSM-5 zeolite was successfully prepared by incorporating tungsten transition metal into a zeolite structure using a conventional impregnation method. The as-obtained W/ZSM-5 zeolite was characterized using several characterization techniques such as XRD, IR and SEM-EDS. The catalyst was then applied to a cascade, single-batch reaction to synthesize bio-polyol from sunflower oils using H2O2 in isopropanol solvent. The obtained results indicated that the W/ZSM-5 zeolite had high catalytic efficiency in the epoxidation of the double bond of vegetable oil and the epoxy ring opening reaction to form bio-polyol. The effect of different reaction conditions on bio-polyol synthesis, such as the dosage of the catalyst and reaction time, were investigated. Bio-polyol was obtained from sunflower oil with a hydroxyl number of 160 mg KOH per g and functionality of 2.9 OH groups per mol. The as-synthesized sunflower oil-based polyol was used to replace fossil-based polyol in the fabrication of a bio-polyurethane-based composite with high oil uptake capacity. The oil adsorption capacity of the porous polyurethane-corn stalk composite was relatively high, up to 15.07 g g-1. In comparison with neat polyurethane and lignocellulosic materials, the new porous bio-composite had higher oil uptake capacity.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
RSC Adv
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Reino Unido