Your browser doesn't support javascript.
loading
Gas Molecule Assisted All-Inorganic Dual-Interface Passivation Strategy for High-Performance Perovskite Solar Cells.
Zeng, Fancong; Xu, Lin; Xing, Jiahe; Wu, Yanjie; Zhang, Yuhong; Zhang, Huan; Hu, Chencheng; Dong, Biao; Bai, Xue; Song, Hongwei.
Afiliación
  • Zeng F; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
  • Xu L; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
  • Xing J; Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China.
  • Wu Y; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
  • Zhang Y; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
  • Zhang H; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
  • Hu C; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
  • Dong B; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
  • Bai X; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
  • Song H; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
Adv Sci (Weinh) ; : e2404444, 2024 Jul 04.
Article en En | MEDLINE | ID: mdl-38965797
ABSTRACT
The trap states at both the upper and bottom interfaces of perovskite layers significantly impact non-radiative carrier recombination. The widely used solvent-based passivation methods result in the disordered distribution of surface components, posing challenges for the commercial application of large-area perovskite solar cells (PSCs). To address this issue, a novel NH3 gas-assisted all-inorganic dual-interfaces passivation strategy is proposed. Through the gas treatment of the perovskite surface, NH3 molecules significantly enhanced the iodine vacancy formation energy (1.54 eV) and bonded with uncoordinated Pb2+ to achieve non-destructive passivation. Meanwhile, the reduction of the film defect states is accompanied by a decrease in the work function, which promotes carrier transport between the interface. Further, a stable passivation layer is constructed to manage the bottom interfacial defects using inorganic potassium tripolyphosphate (PT), whose ─P═O group effectively mitigated the charged defects and lowered the carrier transport barriers and nucleation barriers of PVK, while the gradient distribution of K+ improved the crystalline quality of PVK film. Based on the dual-interface synergistic effect, the optimal MA-contained PSCs with an effective area of 0.1 cm2 achieved an efficiency of 24.51% and can maintain 90% of the initial value after aging (10-20% RH and 20 °C) for 2000 h.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article
...