Your browser doesn't support javascript.
loading
In Situ Hydroxide Growth over Nickel-Iron Phosphide with Enhanced Overall Water Splitting Performances.
Hu, Jian; Yin, Jiayi; Peng, Aoyuan; Zeng, Dishu; Ke, Jinlong; Liu, Jilei; Guo, Kunkun.
Afiliación
  • Hu J; College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
  • Yin J; Hunan University of Humanities Science and Technology, Loudi, 417000, China.
  • Peng A; College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
  • Zeng D; Hunan University of Humanities Science and Technology, Loudi, 417000, China.
  • Ke J; College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
  • Liu J; College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
  • Guo K; College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
Small ; : e2402881, 2024 Jul 05.
Article en En | MEDLINE | ID: mdl-38967154
ABSTRACT
In this work, three dimensional (3D) self-supported Ni-FeOH@Ni-FeP needle arrays with core-shell heterojunction structure are fabricated via in situ hydroxide growth over Ni-FeP surface. The as-prepared electrodes show an outstanding oxygen evolution reaction (OER) performance, only requiring the low overpotential of 232 mV to reach 200 mA cm-2 with the Tafel slop of 40 mV dec-1. For overall water splitting, an alkaline electrolyzer with these electrodes only requires a cell voltage of 2.14 V to reach 1 A cm-2. Mechanistic investigations for such excellent electrocatalytic performances are utilized by in situ Raman spectroscopy in conjunction with density functional theory (DFT) calculations. The computation results present that Ni-FeOH@Ni-FeP attains better intrinsic conductivity and the D-band center (close to that of the ideal catalyst), thus giving superior excellent catalytic performances. Likewise, the surface Ni-FeOH layer can improve the structural stability of Ni-FeP cores and attenuate the eventual formation of irreversible FeOOH products. More importantly, the appearance of FeOOH intermediates can effectively decrease the energy barrier of NiOOH intermediates, and then rapidly accelerate the sluggish reaction dynamics, as well as further enhance the electrocatalytic activities, reversibility and cycling stability.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China