Your browser doesn't support javascript.
loading
SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer.
Xu, Yupu; Wang, Yuzhou; Ma, Shisong.
Afiliación
  • Xu Y; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China.
  • Wang Y; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
  • Ma S; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China; School of Data Science, University of Science and Technology of China, Hefei, China. Electronic address: sma@ustc.edu.cn.
Cell Rep Methods ; 4(7): 100813, 2024 Jul 15.
Article en En | MEDLINE | ID: mdl-38971150
ABSTRACT
Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Perfilación de la Expresión Génica / Análisis de la Célula Individual / Transcriptoma Límite: Animals Idioma: En Revista: Cell Rep Methods Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Perfilación de la Expresión Génica / Análisis de la Célula Individual / Transcriptoma Límite: Animals Idioma: En Revista: Cell Rep Methods Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos