Your browser doesn't support javascript.
loading
A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics.
Ahmadi, Atiyeh; Courtney, Matthew; Ren, Carolyn; Ingalls, Brian.
Afiliación
  • Ahmadi A; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
  • Courtney M; Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada.
  • Ren C; Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada.
  • Ingalls B; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Microbiol Spectr ; 12(8): e0003224, 2024 Aug 06.
Article en En | MEDLINE | ID: mdl-38980028
ABSTRACT
Time-lapse microscopy offers a powerful approach for analyzing cellular activity. In particular, this technique is valuable for assessing the behavior of bacterial populations, which can exhibit growth and intercellular interactions in a monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several image-processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support the analysis of 2D time-lapse images of cellular populations CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of Escherichia coli populations. Performance varies across the packages, with each of the four outperforming the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep learning-based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight into usability, computational efficiency, and feature availability, as a guide to researchers seeking image-processing solutions. IMPORTANCE Time-lapse microscopy provides a detailed window into the world of bacterial behavior. However, the vast amount of data produced by these techniques is difficult to analyze manually. We have analyzed four software tools designed to process such data and compared their performance, using populations of commonly studied bacterial species as our test subjects. Our findings offer a roadmap to scientists, helping them choose the right tool for their research. This comparison bridges a gap between microbiology and computational analysis, streamlining research efforts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Programas Informáticos / Escherichia coli / Imagen de Lapso de Tiempo Idioma: En Revista: Microbiol Spectr Año: 2024 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Programas Informáticos / Escherichia coli / Imagen de Lapso de Tiempo Idioma: En Revista: Microbiol Spectr Año: 2024 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos