Your browser doesn't support javascript.
loading
Cross-attention enables deep learning on limited omics-imaging-clinical data of 130 lung cancer patients.
Verma, Suraj; Magazzù, Giuseppe; Eftekhari, Noushin; Lou, Thai; Gilhespy, Alex; Occhipinti, Annalisa; Angione, Claudio.
Afiliación
  • Verma S; School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.
  • Magazzù G; York St John University, York, UK.
  • Eftekhari N; The Alan Turing Institute, London, UK.
  • Lou T; Gateshead Health NHS Foundation Trust, Gateshead, UK.
  • Gilhespy A; South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK.
  • Occhipinti A; School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK; Centre for Digital Innovation, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington, UK.
  • Angione C; School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK; Centre for Digital Innovation, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington, UK. Electronic address: c.angione@tees.ac.uk.
Cell Rep Methods ; 4(7): 100817, 2024 Jul 15.
Article en En | MEDLINE | ID: mdl-38981473
ABSTRACT
Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. Here, we propose two biologically interpretable and robust deep-learning architectures for survival prediction of non-small cell lung cancer (NSCLC) patients, learning simultaneously from computed tomography (CT) scan images, gene expression data, and clinical information. The proposed models integrate patient-specific clinical, transcriptomic, and imaging data and incorporate Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway information, adding biological knowledge within the learning process to extract prognostic gene biomarkers and molecular pathways. While both models accurately stratify patients in high- and low-risk groups when trained on a dataset of only 130 patients, introducing a cross-attention mechanism in a sparse autoencoder significantly improves the performance, highlighting tumor regions and NSCLC-related genes as potential biomarkers and thus offering a significant methodological advancement when learning from small imaging-omics-clinical samples.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Aprendizaje Profundo / Neoplasias Pulmonares Límite: Female / Humans / Male Idioma: En Revista: Cell Rep Methods Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Aprendizaje Profundo / Neoplasias Pulmonares Límite: Female / Humans / Male Idioma: En Revista: Cell Rep Methods Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos