Your browser doesn't support javascript.
loading
Engineering Gluconbacter oxydans with efficient co-utilization of glucose and sorbitol for one-step biosynthesis of 2-keto-L-gulonic.
Li, Guang; Wang, Xuyang; Zeng, Weizhu; Qin, Zhijie; Li, Jianghua; Chen, Jian; Zhou, Jingwen.
Afiliación
  • Li G; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and Scho
  • Wang X; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and Scho
  • Zeng W; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
  • Qin Z; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
  • Li J; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
  • Chen J; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
  • Zhou J; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and Scho
Bioresour Technol ; 406: 131098, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38986886
ABSTRACT
As the highest-demand vitamin, the development of a one-step vitamin C synthesis process has been slow for a long time. In previous research, a Gluconobacter oxydans strain (GKLG9) was constructed that can directly synthesize 2-keto-L-gulonic acid (2-KLG) from glucose, but carbon source utilization remained low. Therefore, this study first identified the gene 4kas (4-keto-D-arabate synthase) to reduce the loss of extracellular carbon and inhibit the browning of fermentation broth. Then, promoter engineering was conducted to enhance the intracellular glucose transport pathway and concentrate intracellular glucose metabolism on the pentose phosphate pathway to provide more reducing power. Finally, by introducing the D-sorbitol pathway, the titer of 2-KLG was increased to 38.6 g/L within 60 h in a 5-L bioreactor, with a glucose-to-2-KLG conversion rate of about 46 %. This study is an important step in the development of single-bacterial one-step fermentation to produce 2-KLG.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sorbitol / Gluconobacter oxydans / Glucosa Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sorbitol / Gluconobacter oxydans / Glucosa Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido