Your browser doesn't support javascript.
loading
Femtosecond to Microsecond Observation of Photochemical Pathways in Nitroaromatic Phototriggers Using Transient Absorption Spectroscopy.
Whitaker, William; Ghosh, Deborin; Malakar, Partha; Karras, Gabriel; Orr-Ewing, Andrew J.
Afiliación
  • Whitaker W; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
  • Ghosh D; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
  • Malakar P; Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
  • Karras G; Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
  • Orr-Ewing AJ; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
J Phys Chem A ; 128(29): 5892-5905, 2024 Jul 25.
Article en En | MEDLINE | ID: mdl-38988292
ABSTRACT
The synthetic accessibility and tolerance to structural modification of phototriggered compounds (PTs) based on the ortho- nitrobenzene (ONB) protecting group have encouraged a myriad of applications including optimization of biological activity, and supramolecular polymerization. Here, a combination of ultrafast transient absorption spectroscopy techniques is used to study the multistep photochemistry of two nitroaromatic phototriggers based on the ONB chromophore, O-(4,5-dimethoxy-2-nitrobenzyl)-l-serine (DMNB-Ser) and O-[(2-nitrophenyl)methyl]-l-tyrosine hydrochloride (NB-Tyr), in DMSO solutions on femtosecond to microsecond time scales following the absorption of UV light. From a common nitro-S1 excited state, the PTs can either undergo excited state intramolecular hydrogen transfer (ESIHT) to an aci-S1 isomer within the singlet state manifold, leading to direct S1 → S0 internal conversion through a conical intersection, or competitive intersystem crossing (ISC) to access the triplet state manifold on time scales of (1.93 ± 0.03) ps and (13.9 ± 1.2) ps for DMNB-Ser and NB-Tyr, respectively. Deprotonation of aci-T1 species to yield triplet anions is proposed to occur in both PTs, with an illustrative time constant of (9.4 ± 0.7) ns for DMNB-Ser. More than 75% of the photoexcited molecules return to their electronic ground states within 8 µs, either by direct S1 → S0 relaxation or anion reprotonation. Hence, upper limits to the quantum yields of photoproduct formation are estimated to be in the range of 13-25%. Mixed DMSO/H2O solvents show the influence of the environment on the observed photochemistry, for example, revealing two nitro-S1 lifetimes for DMNB-Ser in a 101 DMSO/H2O mixture of 1.95 ps and (10.1 ± 1.2) ps, which are attributed to different microsolvation environments.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido