Potential of V-Si72, V-C72, and V-Al36N36 as catalysts for oxygen reduction reaction.
J Mol Model
; 30(8): 263, 2024 Jul 11.
Article
en En
| MEDLINE
| ID: mdl-38990394
ABSTRACT
CONTEXT The capacities of V-Si72, V-C72, and V-Al36N36 nanocages to catalyze the ORR processes have been investigated. The acceptable pathways of ORR processes on V-Si72, V-C72, and V-Al36N36 nanocages have been examined by DSD-PBEPBE-D3/aug-cc-pVDZ, PW91PW91/aug-cc-pVDZ, and COSMO model in the gas phase and water. The ΔGreaction values of reaction steps of ORR pathways on V-Si72, V-C72, and V-Al36N36 nanocages are calculated. The Eadoption and Eformation of V-Si72, V-C72, and V-Al36N36 nanocages are negative values and these nanostructures are stable materials. The H2O has the lowest Eadsorption on V-Si72, V-C72, and V-Al36N36 nanocages. The *OH formation, creation of *OH-OH*, and formation of O* are rate-determining steps of ORR mechanisms. The overpotential values of ORR processes on V-Si72, V-C72, and V-Al36N36 nanocages are 0.41, 0.37, and 0.30 V, respectively. The V-Al36N36 nanocage have lower overpotential for ORR processes than V-Si72 and V-C72 nanocages by DSD-PBEPBE-D3/aug-cc-pVDZ, PW91PW91/aug-cc-pVDZ, and COSMO model in the gas phase and water. The V-Al36N36 nanocage have more negative ∆Greaction for reaction steps of ORR than V-Si72 and V-C72 nanocages. The V-Al36N36 nanocage with lower overpotential is proposed as an effective catalyst for ORR processes via studied pathways. METHODS:
The DSD-PBEPBE-D3/aug-cc-pVDZ method has been used to optimize and calculate the frequencies of V-Si72, V-C72, and V-Al36N36 nanocages in GAMESS software. The complexes of O, OH, OOH, and H2O with V-Si72, V-C72, and V-Al36N36 nanocages are optimized and frequencies are determined by the DSD-PBEPBE-D3/aug-cc-pVDZ method. The Gactivation and ∆Greaction of ORR pathways on V-Si72, V-C72, and V-Al36N36 nanocages are calculated by DSD-PBEPBE-D3/aug-cc-pVDZ, PW91PW91/aug-cc-pVDZ, and COSMO model in the gas phase and water.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Mol Model
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania