Your browser doesn't support javascript.
loading
Characteristics of disinfection byproducts from dissolved organic matter during chlor(am)ination of source water in Tibetan Plateau, China.
Chen, Ruiqing; Chen, Tianyu; Zhou, Yukun; Li, Linfeng; Li, Lingxiangyu; Zhu, Nali; Li, Zhigang; Wang, Yawei; Jiang, Guibin.
Afiliación
  • Chen R; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Univ
  • Chen T; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhou Y; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Univ
  • Li L; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Univ
  • Li L; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhu N; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Li Z; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: zgli@ucas.ac.cn.
  • Wang Y; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Univ
  • Jiang G; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Univ
Sci Total Environ ; 947: 174628, 2024 Oct 15.
Article en En | MEDLINE | ID: mdl-38992371
ABSTRACT
The Tibetan Plateau, a typical high-altitude area, is less affected by human activities such as industrial development, and the external pollution to water sources is extremely low. Then it is also an important source of water samples for exploring the molecular characteristics of precursors in the dissolved organic matter (DOM) of disinfection byproducts (DBPs) in drinking water. Research data on DBPs in drinking water on the Tibet Plateau remains insufficient, leading to uncertainty about DBP contamination in the area. This study explores the formation potential of 35 typical DBPs, including 6 trihalomethanes (THMs), 9 haloacetic acids (HAAs), 2 halogenated ketones (HKs), 9 nitrosamines (NAs), and 9 aromatic DBPs, during chlorination and chloramination of typical source water samples in the Tibet Plateau of China. Moreover, in order to further investigate the characteristics of the generation of DBPs, the molecular composition of DOM in the collected water samples was characterized by Fourier transform ion cyclotron resonance mass spectrometry. The findings reveal that, for chlorination and chloramination, the average concentration of the five classes of DBPs was ranked as follows (chlorination, chloramination) HAAs (268.1 µg/L, 54.2 µg/L) > THMs (44.0 µg/L, 2.0 µg/L) > HKs (0.7 µg/L, 1.8 µg/L) > NAs (26.5 ng/L, 74.6 ng/L) > Aromatics (20.4 ng/L, 19.5 ng/L). The dominant compounds in THMs, HAAs, and NAs are trichloromethane, dichloroacetic acid, trichloroacetic acid, and nitrosopyrrolidine, respectively. This study highlights a significant positive correlation between DBP generation and UV254, SUV254, and the double bond equivalents of DOM in the source water. It systematically elucidates DOM molecular composition characteristics and DBP formation potential in high-altitude water sources, shedding light on key factors influencing DBP generation at the molecular level in high-altitude areas.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos