Your browser doesn't support javascript.
loading
Modelling and mapping carbon capture potential of farmed blue mussels in the Baltic Sea region.
Vaher, Annaleena; Kotta, Jonne; Stechele, Brecht; Kaasik, Ants; Herkül, Kristjan; Barboza, Francisco R.
Afiliación
  • Vaher A; Estonian Marine Institute, University of Tartu, Mäealuse 14, EE-12618 Tallinn, Estonia. Electronic address: annaleena.vaher@ut.ee.
  • Kotta J; Estonian Marine Institute, University of Tartu, Mäealuse 14, EE-12618 Tallinn, Estonia. Electronic address: jonne.kotta@sea.ee.
  • Stechele B; Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium. Electronic address: stechelebrecht@gmail.com.
  • Kaasik A; Estonian Marine Institute, University of Tartu, Mäealuse 14, EE-12618 Tallinn, Estonia. Electronic address: ants.kaasik@ut.ee.
  • Herkül K; Estonian Marine Institute, University of Tartu, Mäealuse 14, EE-12618 Tallinn, Estonia. Electronic address: kristjan.herkul@ut.ee.
  • Barboza FR; Estonian Marine Institute, University of Tartu, Mäealuse 14, EE-12618 Tallinn, Estonia. Electronic address: francisco.barboza@ut.ee.
Sci Total Environ ; 947: 174613, 2024 Oct 15.
Article en En | MEDLINE | ID: mdl-38997036
ABSTRACT
This study applies a regional Dynamic Energy Budget (DEB) model, enhanced to include biocalcification processes, to evaluate the carbon capture potential of farmed blue mussels (Mytilus edulis/trossulus) in the Baltic Sea. The research emphasises the long-term capture of carbon associated with shell formation, crucial for mitigating global warming effects. The model was built using a comprehensive pan-Baltic dataset that includes information on mussel growth, filtration and biodeposition rates, and nutrient content. The study also examined salinity, temperature, and chlorophyll a as key environmental factors influencing carbon capture in farmed mussels. Our findings revealed significant spatial and temporal variability in carbon dynamics under current and future environmental conditions. The tested future predictions are grounded in current scientific understanding and projections of climate change effects on the Baltic Sea. Notably, the outer Baltic Sea subbasins exhibited the highest carbon capture capacity with an average of 55 t (in the present scenario) and 65 t (under future environmental conditions) of carbon sequestrated per farm (0.25 ha) over a cultivation cycle - 17 months. Salinity was the main driver of predicted regional changes in carbon capture, while temperature and chlorophyll a had more pronounced local effects. This research advances our understanding of the role low trophic aquaculture plays in mitigating climate change. It highlights the importance of developing location-specific strategies for mussel farming that consider both local and regional environmental conditions. The results contribute to the wider discourse on sustainable aquaculture development and environmental conservation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cambio Climático / Monitoreo del Ambiente / Acuicultura / Mytilus edulis Límite: Animals Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cambio Climático / Monitoreo del Ambiente / Acuicultura / Mytilus edulis Límite: Animals Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article