Your browser doesn't support javascript.
loading
Pig-Derived Probiotic Bacillus tequilensis YB-2 Alleviates Intestinal Inflammation and Intestinal Barrier Damage in Colitis Mice by Suppressing the TLR4/NF-κB Signaling Pathway.
Yin, Heng; Wang, Chengbi; Shuai, Yi; Xie, Zhuoya; Liu, Jingbo.
Afiliación
  • Yin H; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
  • Wang C; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
  • Shuai Y; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
  • Xie Z; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
  • Liu J; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Animals (Basel) ; 14(13)2024 Jul 05.
Article en En | MEDLINE | ID: mdl-38998101
ABSTRACT
The search for new probiotics has been regarded as an important approach to improving intestinal health in animals. Bacillus has many advantages, such as strong resistance to harmful external factors, wide distribution, and easy colonization of the intestine. Hence, this study aims to screen for a probiotic Bacillus strain that improves animal intestinal health and to elucidate its probiotic mechanism so as to provide probiotic resources for the development of feed-using probiotic formulations. In this research, a strain of Bacillus was isolated from adult pig feces and named B. tequilensis YB-2. In vitro probiotic experiments showed that B. tequilensis YB-2 had strong acid and bile salt resistance, indicating that this strain can customize in the intestine. To further explore the effect of B. tequilensis YB-2 upon animal intestinal health, DSS-induced murine colitis models were established, and the body weight, colonic morphology, inflammatory cytokines level, and intestinal-barrier- and TLR4/NF-κB-pathway-related protein were determined. The results showed that mice receiving drinking water with 3% DSS were found to develop colitis symptoms, including body weight loss and increased disease activity index (DAI); colon length and microvilli shedding were shortened; tight junctions were disrupted; goblet cells decreased; anti-inflammatory cytokines were inhibited; and pro-inflammatory cytokines and the TLR4/NF-κB signaling pathway were activated. Notably, orally received B. tequilensis YB-2 alleviated symptoms of DSS-induced colitis in mice. The above results indicated that B. tequilensis YB-2 was capable of improving colitis in mice by weakening inflammation and intestinal barrier damage, and its mechanism may involve the TLR4/NF-κB pathway. Overall, this research suggests that B. tequilensis YB-2 has the potential to serve as an animal feed additive to prevent intestinal inflammation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Animals (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Animals (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China
...