Your browser doesn't support javascript.
loading
Model-based multifacet clustering with high-dimensional omics applications.
Zong, Wei; Li, Danyang; Seney, Marianne L; Mcclung, Colleen A; Tseng, George C.
Afiliación
  • Zong W; Department of Biostatistics, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States.
  • Li D; Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, 3811 O'Hara Street, PA 15213, United States.
  • Seney ML; Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, 3811 O'Hara Street, PA 15213, United States.
  • Mcclung CA; Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, 3811 O'Hara Street, PA 15213, United States.
  • Tseng GC; Department of Biostatistics, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States.
Biostatistics ; 2024 Jul 13.
Article en En | MEDLINE | ID: mdl-39002144
ABSTRACT
High-dimensional omics data often contain intricate and multifaceted information, resulting in the coexistence of multiple plausible sample partitions based on different subsets of selected features. Conventional clustering methods typically yield only one clustering solution, limiting their capacity to fully capture all facets of cluster structures in high-dimensional data. To address this challenge, we propose a model-based multifacet clustering (MFClust) method based on a mixture of Gaussian mixture models, where the former mixture achieves facet assignment for gene features and the latter mixture determines cluster assignment of samples. We demonstrate superior facet and cluster assignment accuracy of MFClust through simulation studies. The proposed method is applied to three transcriptomic applications from postmortem brain and lung disease studies. The result captures multifacet clustering structures associated with critical clinical variables and provides intriguing biological insights for further hypothesis generation and discovery.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biostatistics Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biostatistics Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido