Tracking and managing the water-food-environment-ecosystem (WFEE) nexus in groundwater irrigation districts using system dynamics modelling.
Sci Total Environ
; 947: 174705, 2024 Oct 15.
Article
en En
| MEDLINE
| ID: mdl-39002586
ABSTRACT
Groundwater irrigation districts, which play a crucial role in the Earth's critical zone, are confronted with numerous challenges, including water scarcity, pollution, and ecological degradation. These issues come from multiple systems and are linked to a groundwater-dominated water-food-environment-ecosystem nexus problem related to agricultural activities (WFEE). There is a pressing need for the scientific characterization and evaluation of the WFEE nexus in groundwater irrigation districts to assure high-quality, sustainable development. Furthermore, it is critical to provide practical and efficient regulations at the farmer level to uphold the health of this nexus. This paper presents a mapping network that focuses on groundwater irrigation districts. The network aims to convert the restriction indicators utilized to maintain the health of the WFEE nexus (at the irrigation district scale) into the targets employed to manage farmers' living and agricultural activities (at the farmer scale). Additionally, a system dynamics model is created to track and manage the interacting relationships between the WFEE nexus and farmers' living and agricultural activities. This proposed model employs a structured parameter system comprising targets, state parameters, regulatory parameters, and evaluation parameters. This system can get insight into the status of the WFEE nexus at the farmer level using state parameters, induce tailored management and regulation measures using regulatory parameters, assess the effectiveness of various measures using the evaluation parameters, and finally provide decision support to enhance the health of the WFEE nexus. The findings from the research conducted in the Yong'an groundwater irrigation district demonstrated that the model accurately described the relationship between the WFEE nexus and farmers' activities in groundwater irrigation districts. Furthermore, the model responded strongly to a variety of improvement strategies, including adjustments in planting area, optimization of planting pattern, improvement of irrigation method, and implementation of agronomic measures. As a result, it provided farmers with decision support for applying agricultural management methods and addressing the WFEE nexus problem in groundwater irrigation areas.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Sci Total Environ
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Países Bajos