Your browser doesn't support javascript.
loading
Deep learning approach to femoral AVN detection in digital radiography: differentiating patients and pre-collapse stages.
Rakhshankhah, Nima; Abbaszadeh, Mahdi; Kazemi, Atefeh; Rezaei, Soroush Soltan; Roozpeykar, Saeid; Arabfard, Masoud.
Afiliación
  • Rakhshankhah N; Department of Radiology and Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  • Abbaszadeh M; Department of Orthopedic Surgery, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  • Kazemi A; Department of Radiology and Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  • Rezaei SS; Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  • Roozpeykar S; Department of Radiology and Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. Roozbeh.s.62@gmail.com.
  • Arabfard M; Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. arabfard@gmail.com.
BMC Musculoskelet Disord ; 25(1): 547, 2024 Jul 16.
Article en En | MEDLINE | ID: mdl-39010001
ABSTRACT

OBJECTIVE:

This study aimed to evaluate a new deep-learning model for diagnosing avascular necrosis of the femoral head (AVNFH) by analyzing pelvic anteroposterior digital radiography.

METHODS:

The study sample included 1167 hips. The radiographs were independently classified into 6 stages by a radiologist using their simultaneous MRIs. After that, the radiographs were given to train and test the deep learning models of the project including SVM and ANFIS layer using the Python programming language and TensorFlow library. In the last step, the test set of hip radiographs was provided to two independent radiologists with different work experiences to compare their diagnosis performance to the deep learning models' performance using the F1 score and Mcnemar test analysis.

RESULTS:

The performance of SVM for AVNFH detection (AUC = 82.88%) was slightly higher than less experienced radiologists (79.68%) and slightly lower than experienced radiologists (88.4%) without reaching significance (p-value > 0.05). Evaluation of the performance of SVM for pre-collapse AVNFH detection with an AUC of 73.58% showed significantly higher performance than less experienced radiologists (AUC = 60.70%, p-value < 0.001). On the other hand, no significant difference is noted between experienced radiologists and SVM for pre-collapse detection. ANFIS algorithm for AVNFH detection with an AUC of 86.60% showed significantly higher performance than less experienced radiologists (AUC = 79.68%, p-value = 0.04). Although reaching less performance compared to experienced radiologists statistically not significant (AUC = 88.40%, p-value = 0.20).

CONCLUSIONS:

Our study has shed light on the remarkable capabilities of SVM and ANFIS as diagnostic tools for AVNFH detection in radiography. Their ability to achieve high accuracy with remarkable efficiency makes them promising candidates for early detection and intervention, ultimately contributing to improved patient outcomes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Necrosis de la Cabeza Femoral / Aprendizaje Profundo Límite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: BMC Musculoskelet Disord Asunto de la revista: FISIOLOGIA / ORTOPEDIA Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Necrosis de la Cabeza Femoral / Aprendizaje Profundo Límite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: BMC Musculoskelet Disord Asunto de la revista: FISIOLOGIA / ORTOPEDIA Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Reino Unido