Your browser doesn't support javascript.
loading
Light-activated Nanocatalyst for Precise In-situ Antimicrobial Synthesis via Photoredox-Catalytic Click Reaction.
Zhao, Minyang; Cao, Lei; Bai, Qingqing; Lu, Yaru; Li, Bowen; Wu, Wenbo; Ye, Jinzhou; Chen, Xinhai; Wang, Zhihong; Liu, Bin; Mao, Duo.
Afiliación
  • Zhao M; Sun Yat-Sen University, Institute of Precision Medicine, CHINA.
  • Cao L; National University of Singapore, Chemical and Biomolecular Engineering, Singapore, SINGAPORE.
  • Bai Q; Sun Yat-Sen University, Institute of Precision Medicine, CHINA.
  • Lu Y; Tianjin University, Chemistry, CHINA.
  • Li B; Nankai University, Medicine, CHINA.
  • Wu W; Tianjin University, Chemistry, CHINA.
  • Ye J; Shenzhen Bay Laboratory, Institute of Infectious Diseases, CHINA.
  • Chen X; Shenzhen Bay Laboratory, Institute of Infectious Diseases, CHINA.
  • Wang Z; Nankai University, Medicine, CHINA.
  • Liu B; National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, 117585, Singapore, SINGAPORE.
  • Mao D; Sun Yat-Sen University, Institute of Precision Medicine, CHINA.
Angew Chem Int Ed Engl ; : e202408918, 2024 Jul 16.
Article en En | MEDLINE | ID: mdl-39013139
ABSTRACT
The excessive and prolonged use of antibiotics contributes to the emergence of drug-resistant S. aureus strains and potential dysbacteriosis-related diseases, necessitating the exploration of alternative therapeutic approaches. Herein, we present a light-activated nanocatalyst for synthesizing in-situ antimicrobials through photoredox-catalytic click reaction, achieving precise, site-directed elimination of S. aureus skin infections. Methylene blue (MB), a commercially available photosensitizer, was encapsulated within the CuII-based metal-organic framework, MOF-199, and further enveloped with Pluronic F-127 to create the light-responsive nanocatalyst MB@PMOF. Upon exposure to red light, MB participates in a photoredox-catalytic cycle, driven by the 1,3,5-benzenetricarboxylic carboxylate salts (BTC-) ligand presented in the structure of MOF-199. This light-activated MB then catalyzes the reduction of CuII to CuI through a single-electron transfer (SET) process, efficiently initiating the click reaction to form active antimicrobial agents under physiological conditions. Both in vitro and in vivo results demonstrated the effectiveness of MB@PMOF-catalyzed drug synthesis in inhibiting S. aureus, including their methicillin-resistant strains, thereby accelerating skin healing in severe bacterial infections. This study introduces a novel design paradigm for controlled, on-site drug synthesis, offering a promising alternative to realize precise treatment of bacterial infections without undesirable side effects.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania