Your browser doesn't support javascript.
loading
Vγ9Vδ2 T cells recognize butyrophilin 2A1 and 3A1 heteromers.
Fulford, Thomas S; Soliman, Caroline; Castle, Rebecca G; Rigau, Marc; Ruan, Zheng; Dolezal, Olan; Seneviratna, Rebecca; Brown, Hamish G; Hanssen, Eric; Hammet, Andrew; Li, Shihan; Redmond, Samuel J; Chung, Amy; Gorman, Michael A; Parker, Michael W; Patel, Onisha; Peat, Thomas S; Newman, Janet; Behren, Andreas; Gherardin, Nicholas A; Godfrey, Dale I; Uldrich, Adam P.
Afiliación
  • Fulford TS; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Soliman C; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Castle RG; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Rigau M; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Ruan Z; Institute of Molecular Medicine and Experimental Immunology, Rheinische Friedrichs-Wilhelms University of Bonn, Bonn, Germany.
  • Dolezal O; Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
  • Seneviratna R; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Brown HG; Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia.
  • Hanssen E; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Hammet A; Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
  • Li S; Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
  • Redmond SJ; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
  • Chung A; ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia.
  • Gorman MA; CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia.
  • Parker MW; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Patel O; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Peat TS; Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
  • Newman J; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
  • Behren A; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
  • Gherardin NA; ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia.
  • Godfrey DI; St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
  • Uldrich AP; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
Nat Immunol ; 25(8): 1355-1366, 2024 Aug.
Article en En | MEDLINE | ID: mdl-39014161
ABSTRACT
Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores de Antígenos de Linfocitos T gamma-delta / Butirofilinas Límite: Humans Idioma: En Revista: Nat Immunol Asunto de la revista: ALERGIA E IMUNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores de Antígenos de Linfocitos T gamma-delta / Butirofilinas Límite: Humans Idioma: En Revista: Nat Immunol Asunto de la revista: ALERGIA E IMUNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos