Your browser doesn't support javascript.
loading
Deciphering the Selectivity of CBL-B Inhibitors Using All-Atom Molecular Dynamics and Machine Learning.
Zhou, Feng; Du, Haolin; Wang, Yang; Fu, Weiqiang; Zhao, Bingchen; Zhou, Jielong; Zhang, Yingsheng J.
Afiliación
  • Zhou F; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Du H; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Wang Y; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Fu W; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Zhao B; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Zhou J; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Zhang YJ; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
ACS Med Chem Lett ; 15(7): 1017-1025, 2024 Jul 11.
Article en En | MEDLINE | ID: mdl-39015275
ABSTRACT
We employ a combination of accelerated molecular dynamics and machine learning to unravel how the dynamic characteristics of CBL-B and C-CBL confer their binding affinity and selectivity for ligands from subtle structural disparities within their binding pockets and dissociation pathways. Our predictive model of dissociation rate constants (k off) demonstrates a moderate correlation between predicted k off and experimental IC50 values, which is consistent with experimental k off and τ-random accelerated molecular dynamics (τRAMD) results. By employing a linear regression of dissociation trajectories, we identified key amino acids in binding pockets and along the dissociation paths responsible for activity and selectivity. These amino acids are statistically significant in achieving activity and selectivity and contribute to the primary structural discrepancies between CBL-B and C-CBL. Moreover, the binding free energies calculated from molecular mechanics with generalized Born and surface area solvation (MM/GBSA) highlight the ΔG difference between CBL-B and C-CBL. The k off prediction, together with the key amino acids, provides important guides for designing drugs with high selectivity.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Med Chem Lett Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Med Chem Lett Año: 2024 Tipo del documento: Article País de afiliación: China