Your browser doesn't support javascript.
loading
Minocycline prevents photoreceptor degeneration in Retinitis pigmentosa through modulating mitochondrial homeostasis.
Shi, Yuxun; Chen, Yuxi; Pan, Yuan; Chen, Guanyu; Xiao, Zhiqiang; Chen, Xiaoqing; Wang, Minzhen; Liang, Dan.
Afiliación
  • Shi Y; Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
  • Chen Y; Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
  • Pan Y; Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
  • Chen G; Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
  • Xiao Z; Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
  • Chen X; Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
  • Wang M; Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
  • Liang D; Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China. Electronic
Int Immunopharmacol ; 139: 112703, 2024 Jul 16.
Article en En | MEDLINE | ID: mdl-39018687
ABSTRACT
Minocycline, a broad-spectrum tetracycline antibiotic, has been shown to possess anti-inflammatory and antioxidative effects in various neurodegenerative diseases. However, its specific effects on retinitis pigmentosa (RP) have not been thoroughly investigated. Therefore, the objective of this study was to explore the potential role of minocycline in treating RP. In this investigation, we used rd1 to explore the antioxidant effect of minocycline in RP. Minocycline therapy effectively restored retinal function and structure in rd1 mice at 14 days postnatal. Additionally, minocycline inhibited the activation of microglia. Moreover, RNA sequencing analysis revealed a significant downregulation in the expression of mitochondrial genes within the retina of rd1 mice. Further KEGG and GO pathway analysis indicated impaired oxidative phosphorylation and electron transport chain processes. TEM confirmed the presence of damaged mitochondria in photoreceptors, while JC-1 staining demonstrated a decrease in mitochondrial membrane potential, accompanied by an increase in mitochondrial reactive oxygen species (ROS) levels. However, treatment with minocycline successfully reversed the abnormal expression of mitochondrial genes and reduced the levels of mitochondrial ROS, thereby providing protection against photoreceptor degeneration. Collectively, minocycline demonstrated the ability to rescue photoreceptor cells in RP by effectively modulating mitochondrial homeostasis and subsequently inflammation. These findings hold significant implications for the development of potential therapeutic strategies for RP.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China