Your browser doesn't support javascript.
loading
Link prediction accuracy on real-world networks under non-uniform missing-edge patterns.
He, Xie; Ghasemian, Amir; Lee, Eun; Schwarze, Alice C; Clauset, Aaron; Mucha, Peter J.
Afiliación
  • He X; Department of Mathematics, Dartmouth College, Hanover, NH, United States of America.
  • Ghasemian A; Yale Institute for Network Science, Yale University, New Haven, CT, United States of America.
  • Lee E; Department of Scientific Computing at Pukyong National University, Busan, Korea.
  • Schwarze AC; Department of Mathematics, Dartmouth College, Hanover, NH, United States of America.
  • Clauset A; Department of Computer Science and the BioFrontiers Institute at the University of Colorado, Boulder, CO, United States of America.
  • Mucha PJ; Santa Fe Institute, Santa Fe, NM, United States of America.
PLoS One ; 19(7): e0306883, 2024.
Article en En | MEDLINE | ID: mdl-39024271
ABSTRACT
Real-world network datasets are typically obtained in ways that fail to capture all edges. The patterns of missing data are often non-uniform as they reflect biases and other shortcomings of different data collection methods. Nevertheless, uniform missing data is a common assumption made when no additional information is available about the underlying missing-edge pattern, and link prediction methods are frequently tested against uniformly missing edges. To investigate the impact of different missing-edge patterns on link prediction accuracy, we employ 9 link prediction algorithms from 4 different families to analyze 20 different missing-edge patterns that we categorize into 5 groups. Our comparative simulation study, spanning 250 real-world network datasets from 6 different domains, provides a detailed picture of the significant variations in the performance of different link prediction algorithms in these different settings. With this study, we aim to provide a guide for future researchers to help them select a link prediction algorithm that is well suited to their sampled network data, considering the data collection process and application domain.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos