Reductant-independent oxidative cleavage of cellulose by a novel marine fungal lytic polysaccharide monooxygenase.
Int J Biol Macromol
; 276(Pt 2): 133929, 2024 Sep.
Article
en En
| MEDLINE
| ID: mdl-39025178
ABSTRACT
Among the enzymes derived from fungus that act on polysaccharides, lytic polysaccharide monooxygenase (LPMOs) has emerged as a new member with complex reaction mechanisms and high efficiency in dealing with recalcitrant crystalline polysaccharides. This study reported the characteristics, structure, and biochemical properties of a novel LPMO from Talaromyces sedimenticola (namely MaLPMO9K) obtained from the Mariana Trench. MaLPMO9K was a multi-domain protein combined with main body and a carbohydrate-binding module. It was heterologously expressed in E. coli for analyzing peroxidase activity in reactions with the substrate 2,6-DMP, where H2O2 serves as a co-substrate. Optimal peroxidase activity for MaLPMO9K was observed at pH 8 and 25 °C, achieving the best Vmax value of 265.2 U·g-1. In addition, MaLPMO9K also demonstrated the ability to treat cellulose derivatives, and cellobiose substrates without the presence of reducing agents.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Oxidación-Reducción
/
Celulosa
/
Oxigenasas de Función Mixta
Idioma:
En
Revista:
Int J Biol Macromol
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Países Bajos