Histone (de)acetylation in epigenetic regulation of Phytophthora pathobiology.
Mol Plant Pathol
; 25(7): e13497, 2024 Jul.
Article
en En
| MEDLINE
| ID: mdl-39034655
ABSTRACT
Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Phytophthora
/
Histonas
/
Epigénesis Genética
Idioma:
En
Revista:
Mol Plant Pathol
Año:
2024
Tipo del documento:
Article
País de afiliación:
Polonia
Pais de publicación:
Reino Unido