Your browser doesn't support javascript.
loading
Compressed representation of brain genetic transcription.
Ruffle, James K; Watkins, Henry; Gray, Robert J; Hyare, Harpreet; Thiebaut de Schotten, Michel; Nachev, Parashkev.
Afiliación
  • Ruffle JK; Queen Square Institute of Neurology, University College London, London, UK.
  • Watkins H; Queen Square Institute of Neurology, University College London, London, UK.
  • Gray RJ; Queen Square Institute of Neurology, University College London, London, UK.
  • Hyare H; Queen Square Institute of Neurology, University College London, London, UK.
  • Thiebaut de Schotten M; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
  • Nachev P; Brain Connectivity and Behaviour Laboratory, Paris, France.
Hum Brain Mapp ; 45(11): e26795, 2024 Aug 01.
Article en En | MEDLINE | ID: mdl-39045881
ABSTRACT
The architecture of the brain is too complex to be intuitively surveyable without the use of compressed representations that project its variation into a compact, navigable space. The task is especially challenging with high-dimensional data, such as gene expression, where the joint complexity of anatomical and transcriptional patterns demands maximum compression. The established practice is to use standard principal component analysis (PCA), whose computational felicity is offset by limited expressivity, especially at great compression ratios. Employing whole-brain, voxel-wise Allen Brain Atlas transcription data, here we systematically compare compressed representations based on the most widely supported linear and non-linear methods-PCA, kernel PCA, non-negative matrix factorisation (NMF), t-stochastic neighbour embedding (t-SNE), uniform manifold approximation and projection (UMAP), and deep auto-encoding-quantifying reconstruction fidelity, anatomical coherence, and predictive utility across signalling, microstructural, and metabolic targets, drawn from large-scale open-source MRI and PET data. We show that deep auto-encoders yield superior representations across all metrics of performance and target domains, supporting their use as the reference standard for representing transcription patterns in the human brain.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transcripción Genética / Encéfalo / Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: Hum Brain Mapp / Hum. brain mapp / Human brain mapping Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transcripción Genética / Encéfalo / Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: Hum Brain Mapp / Hum. brain mapp / Human brain mapping Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos