Your browser doesn't support javascript.
loading
Dynamic Evolution of Antisite Defect and Coupling Anionic Redox in High-Voltage Ultrahigh-Ni Cathode.
Wu, Kang; Ran, Peilin; Yin, Wen; He, Lunhua; Wang, Baotian; Wang, Fangwei; Zhao, Enyue; Zhao, Jinkui.
Afiliación
  • Wu K; Songshan Lake Materials Laboratory, Dongguan, 088357, CHINA.
  • Ran P; Songshan Lake Materials Laboratory, Dongguan, 088357, CHINA.
  • Yin W; China Spallation Neutron Source, Dongguan, 088357, CHINA.
  • He L; China Spallation Neutron Source, Dongguan, 088357, CHINA.
  • Wang B; China Spallation Neutron Source, Dongguan, 088357, CHINA.
  • Wang F; Institute of Physics Chinese Academy of Sciences, beijing, CHINA.
  • Zhao E; Songshan Lake Materials Laboratory, Songshan Lake Materials Laboratory, Songshan Lake Materials Laboratory, 523808, dongguan, CHINA.
  • Zhao J; Institute of Physics Chinese Academy of Sciences, beijing, CHINA.
Angew Chem Int Ed Engl ; : e202410326, 2024 Jul 25.
Article en En | MEDLINE | ID: mdl-39054680
ABSTRACT
High-voltage ultrahigh-Ni cathodes (LiNixCoyMn1-x-yO2, x ≥ 0.9) can significantly enhance the energy density and cost-effectiveness of Li-ion batteries beyond current levels. However, severe Li-Ni antisite defects and their undetermined dynamic evolutions during high-voltage cycling limit the further development of these ultrahigh-Ni cathodes. In this study, we quantify the dynamic evolutions of the Li-Ni antisite defect using operando neutron diffraction and reveal its coupling relationship with anionic redox, another critical challenge restricting ultrahigh-Ni cathodes. We detect a clear Ni migration coupled with an unstable oxygen lattice, which accompanies the oxidation of oxygen anions at high voltages. Based on these findings, we propose that minimized Li-Ni antisite defects and controlled Ni migrations are essential for achieving stable high-voltage cycling structures in ultrahigh-Ni cathodes. This is further demonstrated by the optimized ultrahigh-Ni cathode, where reduced dynamic evolutions of the Li-Ni antisite defect effectively inhibit the anionic redox, enhancing the 4.5 V cycling stability.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China