Your browser doesn't support javascript.
loading
Variability in Microbial Communities Driven by Particulate Matter on Human Facial Skin.
Fu, Kai; Zhou, Qixing; Wang, Heli.
Afiliación
  • Fu K; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
  • Zhou Q; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350,
  • Wang H; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350,
Toxics ; 12(7)2024 Jul 08.
Article en En | MEDLINE | ID: mdl-39058149
ABSTRACT
Microbial communities are known to play an important role in maintaining ecological balance and can be used as an indicator for assessing environmental pollution. Numerous studies have revealed that air pollution can alter the structure of microbial communities, which may increase health risks. Nevertheless, the relationships between microbial communities and particulate matter (PM) caused by air pollution in terms of health risk assessment are not well understood. This study aimed to validate the influences of PM chemical compositions on microbial communities and assess the associated health risks. Our results, based on similarity analysis, revealed that the stability structure of the microbial communities had a similarity greater than 73%. In addition, the altered richness and diversity of microbial communities were significantly associated with PM chemical compositions. Volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) exerted a positive influence on microbial communities in different environmental variables. Additionally, a stronger linear correlation was observed between hydroxyl radicals (·OH) and the richness of microbial communities. All estimated health risks from PM chemical compositions, calculated under different environmental variables, significantly exceeded the acceptable level by a factor of more than 49. Cr and 1,2-Dibromoethane displayed dual adverse effects of non-carcinogenic and carcinogenic risks. Overall, the study provides insights into the fundamental mechanisms of the variability in microbial communities driven by PM, which may support the crucial role of PM chemical compositions in the risk of microorganisms in the atmospheric environment.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Toxics Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Toxics Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza