Your browser doesn't support javascript.
loading
Structure of epoxide hydrolase 2 from Mangifera indica throws light on the substrate specificity determinants of plant epoxide hydrolases.
Bhoite, Ashwini; Gaur, Neeraj K; Palange, Megha; Kontham, Ravindar; Gupta, Vidya; Kulkarni, Kiran.
Afiliación
  • Bhoite A; Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
  • Gaur NK; Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
  • Palange M; Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
  • Kontham R; Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
  • Gupta V; Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
  • Kulkarni K; Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India. Electronic address: ka.kulkarni@ncl.res.in.
Biochem Biophys Res Commun ; 733: 150444, 2024 11 12.
Article en En | MEDLINE | ID: mdl-39067247
ABSTRACT
Epoxide hydrolases (EHs) are a group of ubiquitous enzymes that catalyze hydrolysis of chemically reactive epoxides to yield corresponding dihydrodiols. Despite extensive studies on EHs from different clades, generic rules governing their substrate specificity determinants have remained elusive. Here, we present structural, biochemical and molecular dynamics simulation studies on MiEH2, a plant epoxide hydrolase from Mangifera indica. Comparative structure-function analysis of nine homologs of MiEH2, which include a few AlphaFold structural models, show that the two conserved tyrosines (MiEH2Y152 and MiEH2Y232) from the lid domain dissect substrate binding tunnel into two halves, forming substrate-binding-pocket one (BP1) and two (BP2). This compartmentalization offers diverse binding modes to their substrates, as exemplified by the binding of smaller aromatic substrates, such as styrene oxide (SO). Docking and molecular dynamics simulations reveal that the linear epoxy fatty acid substrates predominantly occupy BP1, while the aromatic substrates can bind to either BP1 or BP2. Furthermore, SO preferentially binds to BP2, by stacking against catalytically important histidine (MiEH2H297) with the conserved lid tyrosines engaging its epoxide oxygen. Residue (MiEH2L263) next to the catalytic aspartate (MiEH2D262) modulates substrate binding modes. Thus, the divergent binding modes correlate with the differential affinities of the EHs for their substrates. Furthermore, long-range dynamical coupling between the lid and core domains critically influences substrate enantioselectivity in plant EHs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mangifera / Epóxido Hidrolasas / Simulación de Dinámica Molecular Idioma: En Revista: Biochem Biophys Res Commun Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mangifera / Epóxido Hidrolasas / Simulación de Dinámica Molecular Idioma: En Revista: Biochem Biophys Res Commun Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos