Investigation of the Impact of the H310A FcRn Region Mutation on 89Zr-Immuno-PET Brain Imaging with a BBB-Shuttle AntiAmyloid Beta Antibody.
Mol Imaging Biol
; 26(5): 823-834, 2024 Oct.
Article
en En
| MEDLINE
| ID: mdl-39093482
ABSTRACT
PURPOSE:
In the emerging field of antibody treatments for neurodegenerative diseases, reliable tools are needed to evaluate new therapeutics, diagnose and select patients, monitor disease progression, and assess therapy response. Immuno-PET combines the high affinity and exceptional specificity of monoclonal antibodies with the non-invasive imaging technique positron emission tomography (PET). Its application in neurodegenerative disease brain imaging has been limited due to the marginal uptake across the blood-brain barrier (BBB). The emergence of BBB-shuttle antibodies with enhanced uptake across the BBB extended immuno-PET to brain imaging. We recently reported about specific brain uptake of a bispecific aducanumab mTfR antibody in APP/PS1 TG mice using 89Zr-immuno-PET. However, a sufficient target-to-background ratio was reached at a relatively late scanning time point of 7 days post-injection. To investigate if a better target-to-background ratio could be achieved earlier, an aducanumab BBB-shuttle with a mutated Fc region for reduced FcRn affinity was evaluated. PROCEDURES AduH310A-8D3 and Adu-8D3 were modified with DFO*-NCS and subsequently radiolabeled with 89Zr. The potential influence of the H310A mutation, modification with DFO*-NCS, and subsequent radiolabeling on the in vitro binding to amyloid-beta and mTfR1 was investigated via amyloid-beta peptide ELISA and FACS analysis using mTfR1 transfected CHO-S cells. Blood kinetics, brain uptake, in vivo PET imaging and target engagement of radiolabeled AduH310A-8D3 were evaluated and compared to non-mutated Adu-8D3 in APP/PS1 TG mice and wild-type animals as controls.RESULTS:
Radiolabeling was performed with sufficient radiochemical yields and radiochemical purity. In vitro binding to amyloid-beta and mTfR1 showed no impairment. [89Zr]Zr-AduH310A-8D3 showed faster blood clearance and earlier differentiation of amyloid-beta-related brain uptake compared to [89Zr]Zr-Adu-8D3. However, only half of the brain uptake was observed for [89Zr]Zr-AduH310A-8D3.CONCLUSIONS:
Although a faster blood clearance of AduH310A-8D3 was observed, it was concluded that no beneficial effects for 89Zr-immuno-PET imaging of brain uptake were obtained.Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Radioisótopos
/
Circonio
/
Encéfalo
/
Barrera Hematoencefálica
/
Péptidos beta-Amiloides
/
Tomografía de Emisión de Positrones
/
Mutación
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Mol Imaging Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
DIAGNOSTICO POR IMAGEM
Año:
2024
Tipo del documento:
Article
País de afiliación:
Países Bajos
Pais de publicación:
Estados Unidos