Your browser doesn't support javascript.
loading
Estimating global 0.1° scale gridded anthropogenic CO2 emissions using TROPOMI NO2 and a data-driven method.
Zhang, Yucong; Du, Shanshan; Guan, Linlin; Chen, Xiaoyu; Lei, Liping; Liu, Liangyun.
Afiliación
  • Zhang Y; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Du S; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China.
  • Guan L; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China.
  • Chen X; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Lei L; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China.
  • Liu L; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Sci Total Environ ; 949: 175177, 2024 Nov 01.
Article en En | MEDLINE | ID: mdl-39094662
ABSTRACT
Satellite remote sensing is a promising approach for monitoring global CO2 emissions. However, existing satellite-based CO2 observations are too coarse to meet the requirements of fine-scale global mapping. We propose a novel data-driven method to estimate global anthropogenic CO2 emissions at a 0.1° scale, which integrates emissions inventories and satellite data while bypassing the inadequate accuracy of CO2 observations. Due to the co-emitted anthropogenic emissions of nitrogen oxides (NOx = NO + NO2) and CO2, high-resolution NO2 measurements from the TROPOspheric Monitoring Instrument (TROPOMI) are employed to map the global anthropogenic emissions at a global 0.1° scale. We construct the driving features from NO2 data and also incorporate gridded CO2/NOx emission ratios and NOx/NO2 conversion ratios as driving data to describe co-emissions. Both ratios are predicted using a long short-term memory (LSTM) neural network (with an R2 of 0.984 for the CO2/NOx emission ratio and an R2 of 0.980 for the NOx/NO2 conversion ratio). The data-driven model for estimating anthropogenic CO2 emissions is implemented by random forest regression (RFR) and trained using the Emissions Database for Global Atmospheric Research (EDGAR). The satellite-based anthropogenic CO2 emission dataset at a global 0.1° scale agrees well with the national CO2 emission inventories (an R2 of 0.998 with Global Carbon Budget (GCB) and an R2 of 0.996 with EDGAR) and consistent with city-level emission estimates from Carbon Monitor Cities (CMC) with the R2 of 0.824. This data-driven method based on satellite-observed NO2 provides a new perspective for fine-resolution anthropogenic CO2 emissions estimation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China