Your browser doesn't support javascript.
loading
Disparate pathways for extrachromosomal DNA biogenesis and genomic DNA repair.
Rose, John C; Belk, Julia A; Wong, Ivy Tsz-Lo; Luebeck, Jens; Horn, Hudson T; Daniel, Bence; Jones, Matthew G; Yost, Kathryn E; Hung, King L; Kolahi, Kevin S; Curtis, Ellis J; Kuo, Calvin J; Bafna, Vineet; Mischel, Paul S; Chang, Howard Y.
Afiliación
  • Rose JC; Stanford University, Stanford, CA, United States.
  • Belk JA; Stanford School of Medicine, United States.
  • Wong IT; Stanford University, Stanford, CA, United States.
  • Luebeck J; UC San Diego, Jacobs School of Engineering, San Diego, CA, United States.
  • Horn HT; Stanford University, Stanford, CA, United States.
  • Daniel B; Stanford University, United States.
  • Jones MG; Stanford University, United States.
  • Yost KE; Stanford University, United States.
  • Hung KL; Stanford University, Stanford, CA, United States.
  • Kolahi KS; Stanford University, Stanford, CA, United States.
  • Curtis EJ; Stanford University, Stanford, CA, United States.
  • Kuo CJ; Stanford University, Stanford, CA, United States.
  • Bafna V; University of California, San Diego, La Jolla, CA, United States.
  • Mischel PS; University of California, San Diego, San Diego, CA, United States.
  • Chang HY; Stanford University, Stanford, CA, United States.
Cancer Discov ; 2024 Aug 07.
Article en En | MEDLINE | ID: mdl-39109936
ABSTRACT
Oncogene amplification on extrachromosomal DNA (ecDNA) is a pervasive driver event in cancer, yet our understanding of how ecDNA forms is limited. Here, we couple a CRISPR-based method for ecDNA induction with extensive characterization of newly formed ecDNA to examine their biogenesis. We find that DNA circularization is efficient, irrespective of 3D genome context, with formation of 800kb, 1 Mb, and 1.8 Mb ecDNAs reaching or exceeding 15%. We show non-homologous end joining and microhomology-mediated end joining both contribute to ecDNA formation, while inhibition of DNA-PKcs and ATM have opposing impacts on ecDNA formation. EcDNA and the corresponding chromosomal excision scar can form at significantly different rates and respond differently to DNA-PKcs and ATM inhibition. Taken together, our results support a model of ecDNA formation in which double strand break ends dissociate from their legitimate ligation partners prior to joining of illegitimate ends to form the ecDNA and excision scar.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Cancer Discov Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Cancer Discov Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos