Your browser doesn't support javascript.
loading
A bifunctional amylopullulanase of Streptococcus suis ApuA contributes to immune evasion by interaction with host complement C3b.
Xu, Jiajia; Zhu, Jiaqi; Han, Weiyao; Pang, Siqi; Deng, Simin; Chen, Long; Chen, Xiabing; Huang, Qi; Zhou, Rui; Li, Lu.
Afiliación
  • Xu J; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
  • Zhu J; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
  • Han W; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
  • Pang S; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
  • Deng S; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
  • Chen L; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
  • Chen X; Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China.
  • Huang Q; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
  • Zhou R; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
  • Li L; National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 43007
Vet Microbiol ; 297: 110212, 2024 Oct.
Article en En | MEDLINE | ID: mdl-39111202
ABSTRACT
The complement system is the first defense line of the immune system. However, pathogens have evolved numerous strategies to evade complement attacks. Streptococcus suis is an important zoonotic bacterium, harmful to both the pig industry and human health. ApuA has been reported as a bifunctional amylopullulanase and also contributed to virulence of S. suis. Herein, we found that ApuA could activate both classical and alternative pathways of the complement system. Furthermore, by using bacterial two-hybrid, far-western blot and ELISA assays, it was confirmed that ApuA could interact with complement C3b. The interaction domain of ApuA with C3b was found to be its α-Amylase domain (ApuA_N). After construction of an apuA mutant (ΔapuA) and its complementary strain, it was found that compared to the wild-type strain (WT), ΔapuA had significantly increased C3b deposition and membrane attack complex formation. Additionally, ΔapuA showed significantly lower survival rates in human serum and blood and was more susceptible to engulfment by neutrophils and macrophages. Mice infected with ΔapuA had significantly higher survival rates and lower bacterial loads in their blood, lung and brains, compared to those infected with WT. In summary, this study identified ApuA as a novel factor involved in the complement evasion of S. suis and suggested its multifunctional role in the pathogenesis of S. suis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Infecciones Estreptocócicas / Proteínas Bacterianas / Complemento C3b / Streptococcus suis / Evasión Inmune Límite: Animals / Female / Humans Idioma: En Revista: Vet Microbiol Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Infecciones Estreptocócicas / Proteínas Bacterianas / Complemento C3b / Streptococcus suis / Evasión Inmune Límite: Animals / Female / Humans Idioma: En Revista: Vet Microbiol Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos