Your browser doesn't support javascript.
loading
Genetic heterogeneity of engineered Escherichia coli Nissle 1917 strains during scale-up simulation.
Munkler, Lara P; Mohamed, Elsayed T; Vazquez-Uribe, Ruben; Visby Nissen, Victoria; Rugbjerg, Peter; Worberg, Andreas; Woodley, John M; Feist, Adam M; Sommer, Morten O A.
Afiliación
  • Munkler LP; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
  • Mohamed ET; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
  • Vazquez-Uribe R; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Vlaams Instituut voor Biotechnologie, Center for Microbiology, Leuven, Belgium.
  • Visby Nissen V; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
  • Rugbjerg P; Enduro Genetics ApS, Copenhagen, Denmark.
  • Worberg A; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
  • Woodley JM; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark.
  • Feist AM; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, CA, USA.
  • Sommer MOA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark. Electronic address: msom@bio.dtu.dk.
Metab Eng ; 85: 159-166, 2024 Sep.
Article en En | MEDLINE | ID: mdl-39111565
ABSTRACT
Advanced microbiome therapeutics have emerged as a powerful approach for the treatment of numerous diseases. While the genetic instability of genetically engineered microorganisms is a well-known challenge in the scale-up of biomanufacturing processes, it has not yet been investigated for advanced microbiome therapeutics. Here, the evolution of engineered Escherichia coli Nissle 1917 strains producing Interleukin 2 and Aldafermin were investigated in two strain backgrounds with and without the three error-prone DNA polymerases polB, dinB, and umuDC, which contribute to the mutation rate of the host strain. Whole genome short-read sequencing revealed the genetic instability of the pMUT-based production plasmid after serial passaging for approximately 150 generations using an automated platform for high-throughput microbial evolution in five independent lineages for six distinct strains. While a reduction of the number of mutations of 12%-43% could be observed after the deletion of the error-prone DNA polymerases, the interruption of production-relevant genes could not be prevented, highlighting the need for additional strategies to improve the stability of advanced microbiome therapeutics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escherichia coli Idioma: En Revista: Metab Eng Asunto de la revista: ENGENHARIA BIOMEDICA / METABOLISMO Año: 2024 Tipo del documento: Article País de afiliación: Dinamarca Pais de publicación: Bélgica

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escherichia coli Idioma: En Revista: Metab Eng Asunto de la revista: ENGENHARIA BIOMEDICA / METABOLISMO Año: 2024 Tipo del documento: Article País de afiliación: Dinamarca Pais de publicación: Bélgica