Your browser doesn't support javascript.
loading
Impact of nanosilver surface electronic distributions on serum protein interaction and hemocompatibility.
Rivero, Paula S; Pistonesi, Denise B; Belén, Federico; Centurión, M Eugenia; Benedini, Luciano A; Rauschemberger, M Belén; Messina, Paula V.
Afiliación
  • Rivero PS; Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca, B8000FTN, ARGENTINA.
  • Pistonesi DB; Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca, B8000FTN, ARGENTINA.
  • Belén F; Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca, B8000FTN, ARGENTINA.
  • Centurión ME; Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca, B8000FTN, ARGENTINA.
  • Benedini LA; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca, B8000FTN, ARGENTINA.
  • Rauschemberger MB; Department of Biology Biochemistry and Pharmacy, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca, B8000FTN, ARGENTINA.
  • Messina PV; Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca, B8000FTN, ARGENTINA.
Nanotechnology ; 2024 Aug 08.
Article en En | MEDLINE | ID: mdl-39116890
ABSTRACT
Translation of silver-based nanotechnology "from bench to bedside" requires a deep understanding of the molecular aspects of its biological action, which remains controversial at low concentrations and non-spherical morphologies. Here, we present a hemocompatibility approach based on the effect of the distinctive electronic charge distribution in silver nanoparticles (nanosilver) on blood components. On basis of spectroscopic, volumetric, microscopic, dynamic light scattering measurements, pro-coagulant activity tests and cellular inspection we determine that, at extremely low nanosilver concentrations (0.125 - 2.5 µg mL-1) there is a relevant interaction effect on serum albumin and on red blood cells. The explanation has its origin in the surface charge distribution of nanosilver and their electron-mediated energy transfer mechanism. Prism-shaped nanoparticles, with anisotropic charge distributions, act at the surface level generating a compaction of the native protein molecule, while the spherical nanosilver, by exhibiting isotropic surface charge, generates a polar environment comparable to the solvent. Both morphologies induce aggregation at NPs / BSA ≅ 0.044 molar ratio values without altering the coagulation cascade tests, although the spherical-shaped nanosilver has a negative impact on red blood cells. Overall, our results suggest that the electron distributions of nanosilver, even at extremely low concentrations, are a critical factor influencing the molecular structure of blood proteins and red blood cells' membranes. Isotropic forms of nanosilver should be considered with caution, as they are not always the least harmful.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanotechnology Año: 2024 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanotechnology Año: 2024 Tipo del documento: Article País de afiliación: Argentina