Your browser doesn't support javascript.
loading
Dandelion inspired microparticles with highly efficient drug delivery to deep lung.
Sun, Huan; Yan, Shen; Wu, Chaojie; Ma, Jingye; Lu, Kangwei; Cheng, Xi; Yan, Wenqi; Zhang, Shengyu; Chen, Xiao Dong; Wu, Winston Duo.
Afiliación
  • Sun H; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Yan S; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China. Electronic address: syan12@stu.suda.edu.cn.
  • Wu C; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Ma J; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Lu K; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Cheng X; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Yan W; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Zhang S; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Chen XD; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Wu WD; Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China. Electronic address: duo.wu@suda.edu.cn.
Colloids Surf B Biointerfaces ; 244: 114134, 2024 Dec.
Article en En | MEDLINE | ID: mdl-39121569
ABSTRACT
Active pharmaceutical ingredient (API) embedded dry powder for inhalation (AeDPI) shows higher drug loading and delivery dose for directly treating various lung infections. Inspired by the dandelion, we propose a novel kind of AeDPI microparticle structure fabricated by spray freeze drying technology, which would potentially enhance the alveoli deposition efficiency. When inhaling, such microparticles are expected to be easily broken-up into fragments containing API that acts as 'seed' and could be delivered to alveoli aided by the low density 'pappus' composed of excipient. Herein, itraconazole (ITZ), a first-line drug for treating pulmonary aspergillosis, was selected as model API. TPGS, an amphiphilic surfactant, was used to achieve stable primary ITZ nanocrystal (INc) suspensions for spray freeze drying. A series of microparticles were prepared, and the dandelion-like structure was successfully achieved. The effects of feed liquid compositions and freezing parameters on the microparticle size, morphology, surface energy, crystal properties and in vitro aerosol performance were systematically investigated. The optimal sample (SF(-50)D-INc7Leu3-2) in one-way experiment showed the highest fine particle fraction of ∼ 68.96 % and extra fine particle fraction of ∼ 36.87 %, equivalently ∼ 4.60 mg and ∼ 2.46 mg could reach the lung and alveoli, respectively, when inhaling 10 mg dry powders. The response surface methodology (RSM) analysis provided the optimized design space for fabricating microparticles with higher deep lung deposition performance. This study demonstrates the advantages of AeDPI microparticle with dandelion-like structure on promoting the delivery efficiency of high-dose drug to the deep lung.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tamaño de la Partícula / Sistemas de Liberación de Medicamentos / Itraconazol / Pulmón Idioma: En Revista: Colloids Surf B Biointerfaces Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tamaño de la Partícula / Sistemas de Liberación de Medicamentos / Itraconazol / Pulmón Idioma: En Revista: Colloids Surf B Biointerfaces Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos