Your browser doesn't support javascript.
loading
Total ammonia nitrogen inhibits medium-chain fatty acid biosynthesis by disrupting hydrolysis, acidification, chain elongation, substrate transmembrane transport and ATP synthesis processes.
Wang, Xiuping; Han, Junjie; Zeng, Meihui; Chen, Yun; Jiang, Feng; Zhang, Liang; Zhou, Yan.
Afiliación
  • Wang X; School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China.
  • Han J; School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China.
  • Zeng M; School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China.
  • Chen Y; School of Environment, Nanjing Normal University, Nanjing, Jiangsu, China.
  • Jiang F; School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology.
  • Zhang L; School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology. Electronic address: zhangliang25@mail.sysu.e
  • Zhou Y; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore. Electronic address: ZhouYan@ntu.edu.sg.
Bioresour Technol ; 409: 131236, 2024 Oct.
Article en En | MEDLINE | ID: mdl-39122132
ABSTRACT
This study used 16S rRNA gene sequencing and metatranscriptomic analysis to comprehensively illustrate how ammonia stress influenced medium-chain fatty acids (MCFA) biosynthesis. MCFA synthesis was inhibited at total ammonia nitrogen (TAN) concentrations above 1000 mg N/L. TAN stress hindered organic hydrolysis, acidification, and volatile fatty acids elongation. Chain-elongating bacteria (e.g., Clostridium_sensu_stricto_12, Clostridium_sensu_stricto_1, Caproiciproducens) abundance remained unchanged, but their activity decreased, partially due to the increased reactive oxygen species. Metatranscriptomic analysis revealed reduced activity of enzymes critical for MCFA production under TAN stress. Fatty acid biosynthesis pathway rather than reverse ß-oxidation pathway primarily contributed to MCFA production, and was inhibited under TAN stress. Functional populations likely survived TAN stress through osmoprotectant generation and potassium uptake regulation to maintain osmotic pressure, with NADH-ubiquinone oxidoreductase potentially compensating for ATP loss. This study enhances understanding of MCFA biosynthesis under TAN stress, aiding MCFA production system stability and efficiency improvement.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Adenosina Trifosfato / Ácidos Grasos / Amoníaco Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Adenosina Trifosfato / Ácidos Grasos / Amoníaco Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido