Your browser doesn't support javascript.
loading
Immobilization of cross-linked enzymes aggregates on hierarchical covalent organic frameworks: Highly stable chemoenzymatic nanoreactor for asymmetric synthesis of optically active halohydrins.
Guo, Jiayi; Yue, Xiaoyang; Hou, Yuying; Wang, Yujie; Liu, Yunting; Liu, Guanhua; He, Ying; Ma, Li; Zhou, Liya; Jiang, Yanjun.
Afiliación
  • Guo J; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.
  • Yue X; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China. Electronic addre
  • Hou Y; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.
  • Wang Y; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.
  • Liu Y; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
  • Liu G; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
  • He Y; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
  • Ma L; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
  • Zhou L; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China. Electronic addre
  • Jiang Y; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
Int J Biol Macromol ; 278(Pt 2): 134641, 2024 Oct.
Article en En | MEDLINE | ID: mdl-39128755
ABSTRACT
Organometallic catalyst is extensively applied for the non-enzymatic regeneration of nicotinamide adenine dinucleotide (phosphate) cofactors, but suffering from the mutual inactivation with the enzymes in one pot. The spatially separated immobilization of organometallic catalyst and enzymes on suitable carriers not only can reduce their mutual inhabitation but also can enhance their reusability. Here in this work, we present a hierarchical porous COFs (HP-TpBpy) that incorporated with [(Cp*RhCl2]2 to generate the metalized COF, Rh-HP-TpBpy. The obtained Rh-HP-TpBpy exhibited superior performance in nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration using formate as the hydride donor, significantly outperforming the natural formate dehydrogenases in cofactor preference toward NADP+. Subsequently, the Lactobacillus fermentum short-chain dehydrogenase/reductase 1 (LfSDR1) was then cross-linked into enzyme aggregates (CLEA) and immobilized on hierarchical Rh-HP-TpBpy, achieving the integrated chemoenzymatic catalyst, LfSDR1@Rh-HP-TpBpy, which can catalyze the chemoenzymatic reduction of halogenated aryl ketones and give the corresponding optically active halohydrins with high conversion and enantiomeric excess (ee) value up to 99 %. The LfSDR1@Rh-HP-TpBpy also exhibits largely enhanced stability compared with the free LfSDR1 and the CLEAs-LfSDR1, enabling its excellent reusability.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enzimas Inmovilizadas / Estructuras Metalorgánicas Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enzimas Inmovilizadas / Estructuras Metalorgánicas Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos