Your browser doesn't support javascript.
loading
Main-Group Metal-Nonmetal Dynamic Proton Bridges Enhance Ammonia Electrosynthesis.
Sun, Yuntong; Dai, Liming; Dong, Kai; Sui, Nicole L D; Li, Yinghao; Sun, Jingwen; Zeng, Jianrong; Fan, Wenjun; Tian, Meng; Zhu, Junwu; Lee, Jong-Min.
Afiliación
  • Sun Y; Nanyang Technological University, Chemistry, Chemical engineering, and Biotechnology, 62 NANYANG DRIVE, SCBE, NTU, 637459, SINGAPORE.
  • Dai L; Nanjing University of Science and Technology, chemistry and Chemical Engineering, CHINA.
  • Dong K; The University of Adelaide, Chemical Engineering, AUSTRALIA.
  • Sui NLD; Nanyang Technological University, Chemistry, Chemical engineering, and Biotechnology, SINGAPORE.
  • Li Y; Nanyang Technological University, Chemistry, Chemical engineering, and Biotechnology, SINGAPORE.
  • Sun J; Nanjing University of Science and Technology, chemistry and Chemical Engineering, CHINA.
  • Zeng J; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CHINA.
  • Fan W; Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA.
  • Tian M; Nanjing University of Science and Technology, Fundamental and Frontier Sciences, CHINA.
  • Zhu J; Nanjing University of Science and Technology, chemistry and Chemical Engineering, CHINA.
  • Lee JM; NTU: Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore, SINGAPORE.
Angew Chem Int Ed Engl ; : e202412426, 2024 Aug 13.
Article en En | MEDLINE | ID: mdl-39136320
ABSTRACT
The electrochemical nitrogen reduction reaction is a crucial process for the sustainable production of ammonia for energy and agriculture applications. However, the reaction's efficiency is highly dependent on the activation of the inert N≡N bond, which is hindered by the electron back-donation to the π* orbitals of the N≡N bond, resulting in low eNRR capacity. Herein, we report a main-group metal-non-metal (O-In-S) eNRR catalyst featuring a dynamic proton bridge, with In-S serving as the polarization pair and O functioning as the dynamic electron pool. In-situ spectroscopic analysis and theoretical calculations reveal that the In-S polarization pair acts as asymmetric dual-sites, polarizing the N≡N bond by concurrently back-donating electrons to both the πx* and πy* orbitals of N2, thereby overcoming the significant band gap limitations, while inhibiting the competitive hydrogen evolution reaction. Meanwhile, the O dynamic electron pool acts as a "repository" for electron storage and donation to the In-S polarization pair. As a result, the O-In-S dynamic proton bridge exhibits exceptional NH3 yield rates and Faradaic efficiencies (FEs) across a wide potential window of 0.3 V, with an optimal NH3 yield of 80.07 ± 4.25 µg h-1 mg-1 and an FE of 38.01 ± 2.02%, outperforming most previously reported catalysts.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Alemania