Your browser doesn't support javascript.
loading
The global distribution and climate resilience of marine heterotrophic prokaryotes.
Heneghan, Ryan F; Holloway-Brown, Jacinta; Gasol, Josep M; Herndl, Gerhard J; Morán, Xosé Anxelu G; Galbraith, Eric D.
Afiliación
  • Heneghan RF; Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia. ryan.heneghan@gmail.com.
  • Holloway-Brown J; School of Science, Technology and Engineering, University of the Sunshine Coast, Moreton Bay, QLD, Australia. ryan.heneghan@gmail.com.
  • Gasol JM; School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia. ryan.heneghan@gmail.com.
  • Herndl GJ; School of Computer and Mathematical Sciences, University of Adelaide, Kaurna Country, Adelaide, SA, Australia.
  • Morán XAG; Institut de Ciències del Mar-CSIC, Barcelona, Catalunya, Spain.
  • Galbraith ED; Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
Nat Commun ; 15(1): 6943, 2024 Aug 13.
Article en En | MEDLINE | ID: mdl-39138161
ABSTRACT
Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr-1). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Cambio Climático / Océanos y Mares / Archaea / Biomasa / Procesos Heterotróficos Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Cambio Climático / Océanos y Mares / Archaea / Biomasa / Procesos Heterotróficos Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido