Your browser doesn't support javascript.
loading
Human reliability analysis in maintenance and repair operations of mining trucks: A Bayesian network approach.
Zaker Hossein, Ali Reza; Sayadi, Ahmad Reza; Javad Rahimdel, Mohammad; Reza Moradi, Mohammad.
Afiliación
  • Zaker Hossein AR; Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Iran.
  • Sayadi AR; Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Iran.
  • Javad Rahimdel M; Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
  • Reza Moradi M; Goharzamin Mining and Industrial Company, Iran.
Heliyon ; 10(15): e34765, 2024 Aug 15.
Article en En | MEDLINE | ID: mdl-39144965
ABSTRACT
Failures in mining machinery can abruptly halt mineral production and operations, emphasizing the indispensable role of humans in maintenance and repair operations. Addressing human errors is crucial for ensuring a safe and reliable system, particularly during maintenance activities where accidents frequently occur. This paper focuses on evaluating Human Reliability (HR) to enhance activity implementation effectiveness. Given the challenge of limited and uncertain data on human errors, this study aims to estimate the probability of human errors using Bayesian networks (BN) under uncertain parameters. Applying this approach to assess HR in the maintenance and repair operations of mining trucks at Golgohar Iron Ore Mine in Iran, the study identifies critical factors influencing error occurrence in a fuzzy environment. The results highlight key factors impacting human error and offer insights into estimating HR with minimal human intervention.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Reino Unido