Human organic anion transporting polypeptide 1B3 (OATP1B3) is more heavily N-glycosylated than OATP1B1 in extracellular loops 2 and 5.
Int J Biol Macromol
; 278(Pt 2): 134748, 2024 Oct.
Article
en En
| MEDLINE
| ID: mdl-39147348
ABSTRACT
Human organic anion transporting polypeptide 1B3 (OATP1B3) and 1B1 are two liver-specific and highly homologous uptake transporters, whose structures consist of 12 transmembrane domains. The present study showed that OATP1B3 is more heavily N-glycosylated than OATP1B1 in extracellular loop 2 (EL2) and EL5. OATP1B3 has six N-glycosylation sites, namely N134, N145, N151, N445, N503, and N516, which is twice of that of OATP1B1. Single removal of individual N-glycans seems to have minimal influence on the surface expression and function of OATP1B3. However, simultaneous removal of all N-glycans will lead to OATP1B3's large retention in the endoplasmic reticulum and cellular degradation and thus significantly disrupts its surface expression. While N-glycosylation plays a crucial role in the surface expression of OATP1B3, it also has some effect on the transport function of OATP1B3 per se, which is not due to a decrease of substrate binding affinity but due to a reduced transporter's turnover number. Taken together, N-glycosylation is essential for normal surface expression and function of OATP1B3. Its disruption by some liver diseases such as NASH might alter the pharmacokinetic/pharmacodynamic properties of OATP1B3's substrate drugs.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Transportador 1 de Anión Orgánico Específico del Hígado
/
Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos
Límite:
Humans
Idioma:
En
Revista:
Int J Biol Macromol
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Países Bajos