Your browser doesn't support javascript.
loading
Yellow tea polysaccharides protect against non-alcoholic fatty liver disease via regulation of gut microbiota and bile acid metabolism in mice.
Huang, Yuzhe; Chen, Hao; Chen, Jielin; Wu, Qingxi; Zhang, Wenna; Li, Daxiang; Lu, Yongming; Chen, Yan.
Afiliación
  • Huang Y; School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Key Laboratory for Ecological Engineeri
  • Chen H; School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China.
  • Chen J; School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China.
  • Wu Q; School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China.
  • Zhang W; School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China.
  • Li D; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
  • Lu Y; School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China.
  • Chen Y; School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China. Electronic address: chenyan@ahu.edu.cn.
Phytomedicine ; 133: 155919, 2024 Aug 06.
Article en En | MEDLINE | ID: mdl-39153277
ABSTRACT

BACKGROUND:

Nonalcoholic fatty liver disease (NAFLD) is a major clinical and global public health issue, with no specific pharmacological treatment available. Currently, there is a lack of approved drugs for the clinical treatment of NAFLD. Large-leaf yellow tea polysaccharides (YTP) is a natural biomacromolecule with excellent prebiotic properties and significant therapeutic effects on multiple metabolic diseases. However, the specific mechanisms by which YTP regulates NAFLD remain unclear.

PURPOSE:

This study aims to explore the prebiotic effects of YTP and the potential mechanisms by which it inhibits hepatic cholesterol accumulation in NAFLD mice.

METHODS:

The effects of YTP on lipid accumulation were evaluated in NAFLD mice through obesity trait analysis and bile acids (BAs) metabolism assessment. Additionally, fecal microbiota transplantation (FMT) was performed, and high-throughput sequencing was employed to investigate the mechanisms underlying YTP's regulatory effects on gut microbiota and BA metabolism.

RESULTS:

Our study demonstrated that YTP altered the constitution of colonic BA, particularly increasing the levels of conjugated BA and non-12OH BA, which suppressed ileum FXR receptors and hepatic BA reabsorption, facilitated BA synthesis, and fecal BA excretion. The modifications were characterized by a decrease in the levels of FXR, FGF15, FGFR4, and ASBT proteins, and an increase in the levels of Cyp7a1 and Cyp27a1 proteins. YTP might affect enterohepatic circulation and by the activated the hepatic FXR-SHP pathway. Meanwhile, YTP reshaped the intestinal microbiome structure by decreasing BSH-producing genera and increasing taurine metabolism genera. The correlation analysis implied that Muribaculaceae, Pseudomonas, acterium_coprostanoligenes_group, Clostridiales, Lachnospiraceae_NK4A136_group, Delftia, Dubosiella, and Romboutsia were strongly correlated with specific BA monomers.

CONCLUSIONS:

YTP modulates bile salt hydrolase-related microbial genera to activate alternative bile acid synthesis pathways, thereby inhibiting NAFLD progression. These results suggest that YTP may serve as a potential probiotic formulation, offering a feasible dietary intervention for NAFLD.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phytomedicine Asunto de la revista: TERAPIAS COMPLEMENTARES Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phytomedicine Asunto de la revista: TERAPIAS COMPLEMENTARES Año: 2024 Tipo del documento: Article