Your browser doesn't support javascript.
loading
Glycyrrhizic acid alleviates concanavalin A-induced acute liver injury by regulating monocyte-derived macrophages.
Lu, Juan; Gu, Xinyu; Xue, Chen; Shi, Qingmiao; Jia, Junjun; Cheng, Jinlin; Zeng, Yifan; Chu, Qingfei; Yuan, Xin; Bao, Zhengyi; Li, Lanjuan.
Afiliación
  • Lu J; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
  • Gu X; Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
  • Xue C; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
  • Shi Q; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
  • Jia J; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
  • Cheng J; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
  • Zeng Y; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
  • Chu Q; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
  • Yuan X; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
  • Bao Z; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
  • Li L; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhej
Phytomedicine ; 133: 155586, 2024 Oct.
Article en En | MEDLINE | ID: mdl-39159503
ABSTRACT
Autoimmune hepatitis (AIH) is characterized by persistent liver inflammation induced by aberrant immune responses. Glycyrrhizic acid (GA), a prominent bioactive ingredient of licorice, has shown potential as a safe and effective treatment for AIH. However, the immune regulatory mechanism by which GA exerts its therapeutic effect on AIH remains elusive. In this study, we found that GA intervention significantly alleviated ConA-induced acute liver injury in mice. Cytometry by time-of-flight (CyTOF) analysis revealed that GA increased the abundance of anti-inflammatory F4/80loCD11bhiMHCIIhi MoMF-1 and decreased the abundance of pro-inflammatory F4/80loCD11bhiiNOShi MoMF-3. Multiplex immunofluorescence demonstrated the infiltration of MoMFs in liver tissues. Single-cell RNA sequencing (scRNA-seq) analysis indicated that GA facilitated the immune activation in MoMFs, regulated gene expression of diverse cytokines secreted by MoMFs, and played a role in shaping the immune microenvironment. By integrating the results of CyTOF with scRNA-seq, our study comprehensively elucidates the immune landscape of ConA-induced liver injury following GA intervention, advancing the understanding of GA's mechanism of action. However, it is important to note that some single-cell data in this study remain raw and require further processing and annotation. Our findings suggest that GA alleviates ConA-induced acute liver injury by regulating the function of MoMFs, opening potential avenues for AIH treatment and management, and providing a theoretical basis for the design of novel MoMFs-centered immunotherapies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Concanavalina A / Ácido Glicirrínico / Enfermedad Hepática Inducida por Sustancias y Drogas / Macrófagos Límite: Animals Idioma: En Revista: Phytomedicine Asunto de la revista: TERAPIAS COMPLEMENTARES Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Concanavalina A / Ácido Glicirrínico / Enfermedad Hepática Inducida por Sustancias y Drogas / Macrófagos Límite: Animals Idioma: En Revista: Phytomedicine Asunto de la revista: TERAPIAS COMPLEMENTARES Año: 2024 Tipo del documento: Article Pais de publicación: Alemania