Your browser doesn't support javascript.
loading
Firing rate models for gamma oscillations in I-I and E-I networks.
Lu, Yiqing; Rinzel, John.
Afiliación
  • Lu Y; Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
  • Rinzel J; Courant Institute of Mathematical Sciences, New York University, New York, NY, USA. rinzeljm@gmail.com.
J Comput Neurosci ; 52(4): 247-266, 2024 Nov.
Article en En | MEDLINE | ID: mdl-39160322
ABSTRACT
Firing rate models for describing the mean-field activities of neuronal ensembles can be used effectively to study network function and dynamics, including synchronization and rhythmicity of excitatory-inhibitory populations. However, traditional Wilson-Cowan-like models, even when extended to include an explicit dynamic synaptic activation variable, are found unable to capture some dynamics such as Interneuronal Network Gamma oscillations (ING). Use of an explicit delay is helpful in simulations at the expense of complicating mathematical analysis. We resolve this issue by introducing a dynamic variable, u, that acts as an effective delay in the negative feedback loop between firing rate (r) and synaptic gating of inhibition (s). In effect, u endows synaptic activation with second order dynamics. With linear stability analysis, numerical branch-tracking and simulations, we show that our r-u-s rate model captures some key qualitative features of spiking network models for ING. We also propose an alternative formulation, a v-u-s model, in which mean membrane potential v satisfies an averaged current-balance equation. Furthermore, we extend the framework to E-I networks. With our six-variable v-u-s model, we demonstrate in firing rate models the transition from Pyramidal-Interneuronal Network Gamma (PING) to ING by increasing the external drive to the inhibitory population without adjusting synaptic weights. Having PING and ING available in a single network, without invoking synaptic blockers, is plausible and natural for explaining the emergence and transition of two different types of gamma oscillations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Potenciales de Acción / Ritmo Gamma / Modelos Neurológicos Límite: Animals / Humans Idioma: En Revista: J Comput Neurosci Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Potenciales de Acción / Ritmo Gamma / Modelos Neurológicos Límite: Animals / Humans Idioma: En Revista: J Comput Neurosci Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos