Your browser doesn't support javascript.
loading
A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport.
Liu, Xiaoming; Liu, Fengyu; Chhabra, Hemani; Maffeo, Christopher; Chen, Zhuo; Huang, Qiang; Aksimentiev, Aleksei; Arai, Tatsuo.
Afiliación
  • Liu X; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China. liuxiaoming555@bit.edu.cn.
  • Liu F; Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China. liuxiaoming555@bit.edu.cn.
  • Chhabra H; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
  • Maffeo C; Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.
  • Chen Z; Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA.
  • Huang Q; Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA.
  • Aksimentiev A; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA.
  • Arai T; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
Nat Commun ; 15(1): 7210, 2024 Aug 22.
Article en En | MEDLINE | ID: mdl-39174536
ABSTRACT
Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Lumen-tunable nanopore like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large tunable lumen. It allows in-situ transition from expanded state to contracted state without changing its stable triangular shape, and vice versa, in which specific DNA bindings as stimuli mechanically pinch and release the three corners of the triangular frame. Transmission electron microscopy images and molecular dynamics simulations illustrate the stable architectures and the high shape retention. Single-channel current recordings and fluorescence influx studies demonstrate the low-noise repeatable readouts and the controllable cross-membrane macromolecular transport. We envision that the proposed DNA nanopores could offer powerful tools in molecular sensing, drug delivery, and the creation of synthetic cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Simulación de Dinámica Molecular / Nanoporos Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Simulación de Dinámica Molecular / Nanoporos Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido