Your browser doesn't support javascript.
loading
TIANA: transcription factors cooperativity inference analysis with neural attention.
Li, Rick Z; Han, Claudia Z; Glass, Christopher K.
Afiliación
  • Li RZ; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
  • Han CZ; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
  • Glass CK; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA. ckg@ucsd.edu.
BMC Bioinformatics ; 25(1): 274, 2024 Aug 22.
Article en En | MEDLINE | ID: mdl-39174927
ABSTRACT

BACKGROUND:

Growing evidence suggests that distal regulatory elements are essential for cellular function and states. The sequences within these distal elements, especially motifs for transcription factor binding, provide critical information about the underlying regulatory programs. However, cooperativities between transcription factors that recognize these motifs are nonlinear and multiplexed, rendering traditional modeling methods insufficient to capture the underlying mechanisms. Recent development of attention mechanism, which exhibit superior performance in capturing dependencies across input sequences, makes them well-suited to uncover and decipher intricate dependencies between regulatory elements.

RESULT:

We present Transcription factors cooperativity Inference Analysis with Neural Attention (TIANA), a deep learning framework that focuses on interpretability. In this study, we demonstrated that TIANA could discover biologically relevant insights into co-occurring pairs of transcription factor motifs. Compared with existing tools, TIANA showed superior interpretability and robust performance in identifying putative transcription factor cooperativities from co-occurring motifs.

CONCLUSION:

Our results suggest that TIANA can be an effective tool to decipher transcription factor cooperativities from distal sequence data. TIANA can be accessed through https//github.com/rzzli/TIANA .
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido