Your browser doesn't support javascript.
loading
Exploring Prediabetes Pathways Using Explainable AI on Data from Electronic Medical Records.
Console, Davide; Lenatti, Marta; Simeone, Davide; Keshavjee, Karim; Guergachi, Aziz; Mongelli, Maurizio; Paglialonga, Alessia.
Afiliación
  • Console D; Politecnico di Milano, Milan, Italy.
  • Lenatti M; CNR-IEIIT, Turin, Italy.
  • Simeone D; Politecnico di Milano, Milan, Italy.
  • Keshavjee K; CNR-IEIIT, Turin, Italy.
  • Guergachi A; University of Toronto, Toronto, Canada.
  • Mongelli M; Toronto Metropolitan University, Toronto, Canada.
  • Paglialonga A; York University, Toronto, Canada.
Stud Health Technol Inform ; 316: 736-740, 2024 Aug 22.
Article en En | MEDLINE | ID: mdl-39176900
ABSTRACT
This study leverages data from a Canadian database of primary care Electronic Medical Records to develop machine learning models predicting type 2 diabetes mellitus (T2D), prediabetes, or normoglycemia. These models are used as a basis for extracting counterfactual explanations and derive personalized changes in biomarkers to prevent T2D onset, particularly in the still reversible prediabetic state. The models achieve satisfactory performance. Furthermore, feature importance analysis underscores the significance of fasting blood sugar and glycated hemoglobin, while counterfactuals explanations emphasize the centrality of keeping body mass index and cholesterol indicators within or close to the clinically desirable ranges. This research highlights the potential of machine learning and counterfactual explanations in guiding preventive interventions that may help slow down the progression from prediabetes to T2D on an individual basis, eventually fostering a recovery from prediabetes to a normoglycemic state.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estado Prediabético / Diabetes Mellitus Tipo 2 / Registros Electrónicos de Salud / Aprendizaje Automático Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estado Prediabético / Diabetes Mellitus Tipo 2 / Registros Electrónicos de Salud / Aprendizaje Automático Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Países Bajos